Skip to content
Snippets Groups Projects
Verified Commit d12969d3 authored by Gorka Fraga Gonzalez's avatar Gorka Fraga Gonzalez :seedling: Committed by GitLab UZH
Browse files

added filename of scan_list tablbes as input in input_mice, corrected...

added filename of scan_list tablbes as input in input_mice, corrected publication code to merge and display as tabs
parent db3c0474
No related branches found
No related tags found
No related merge requests found
...@@ -13,35 +13,39 @@ author: ...@@ -13,35 +13,39 @@ author:
orcid: 0000-0003-2665-0995 orcid: 0000-0003-2665-0995
affiliations: affiliations:
- name: The Interface Group, Institute of Physiology, University of Zurich - name: The Interface Group, Institute of Physiology, University of Zurich
format:
html:
grid:
body-width: 1500px
--- ---
## Setup
[test_link](https://gitlab.uzh.ch/)
### Images ### Images
### Materials and equipment table ### Materials and equipment table
## Supplemental Results ## Supplemental Results
### Experiment 2: CSF spaces segmentation ### Experiment 2: CSF spaces segmentation
![](images/JP26-invivo-2scan-phase3-postinjection-brain-80-90min_web.png){width="600"} ![](images/JP26-invivo-2scan-phase3-postinjection-brain-80-90min_web.png){width="600"}
Three dimensional rendering of CSF spaces enclosed in the mouse skull: Infusion of contrast agent in the lateral ventricles during high-resolution synchrotron radiation-based hard X-ray computed tomography imaging allows 3D visualization with virtual slicing in all directions. Lateral ventricles in blue, third ventricle in green, aqueduct in pink and fourth ventricle in yellow. Three dimensional rendering of CSF spaces enclosed in the mouse skull: Infusion of contrast agent in the lateral ventricles during high-resolution synchrotron radiation-based hard X-ray computed tomography imaging allows 3D visualization with virtual slicing in all directions. Lateral ventricles in blue, third ventricle in green, aqueduct in pink and fourth ventricle in yellow.
### Experiment 4: Contrast agent dynamics during lateral ventricle influsion ### Experiment 4: Contrast agent dynamics during lateral ventricle influsion
- add movie (link to Zenodo)
- add movie (link to Zenodo)
### Experiment 6: Cardiac-gated 3D imaging ### Experiment 6: Cardiac-gated 3D imaging
- add movie (link to Zenodo)
- add movie (link to Zenodo)
### Experiment 7: Non-periodic ChP movement within the lateral ventricle ### Experiment 7: Non-periodic ChP movement within the lateral ventricle
- add movie (link to Zenodo)
- add movie (link to Zenodo)
## Discussion: CSF flow back to the infusion cannula ## Discussion: CSF flow back to the infusion cannula
- add projections movie (link to Zenodo)
- add projections movie (link to Zenodo)
<!-- Do not edit below this line !! --> <!-- Do not edit below this line !! -->
...@@ -60,7 +64,7 @@ colnames(paths) <- 'Protocols' ...@@ -60,7 +64,7 @@ colnames(paths) <- 'Protocols'
# Add HTML code so that it becomes a clickable link # Add HTML code so that it becomes a clickable link
paths$Protocols <- paste0('<a href=\'',paths$Protocols,'\' target=\'_blank\'>', paths$Protocols,'</a>') paths$Protocols <- paste0('<a href=\'',paths$Protocols,'\' target=\'_blank\'>', paths$Protocols,'</a>')
#file.path(here::here(), apply(folders, 1, paste, collapse = .Platform$file.sep), 'protocols')
# Render table # Render table
DT::datatable(paths, options = list(dom = 't'), escape = FALSE, rownames = FALSE, ) DT::datatable(paths, options = list(dom = 't'), escape = FALSE, rownames = FALSE, )
...@@ -73,25 +77,49 @@ DT::datatable(paths, options = list(dom = 't'), escape = FALSE, rownames = FALSE ...@@ -73,25 +77,49 @@ DT::datatable(paths, options = list(dom = 't'), escape = FALSE, rownames = FALSE
library(dplyr) library(dplyr)
# Take the relevant rows from the tables specified in inputs # Take the relevant rows from the tables specified in inputs
data_used <- list() mice_used <- list()
scans_used <- list()
for (i in 1:nrow(inputs)){ for (i in 1:nrow(inputs)){
row_filepath <- file.path(here::here(), 'experiments',inputs$Data_type[i], inputs$Facility_name_YYYY_month[i], "metadata_tables", inputs$Metadata_file[i]) row_filepath <- file.path(here::here(), 'experiments',inputs$Data_type[i], inputs$Facility_name_YYYY_month[i], "metadata_tables",inputs$Metadata_file_mouse[i])
data_used[[i]] <- read.csv(row_filepath) %>% filter(Subject_ID == inputs$Subject_ID[i]) # read table and filter subject mice_used[[i]] <- read.csv(row_filepath) %>% filter(Subject_ID == inputs$Subject_ID[i]) # read table and filter subject
mice_used[[i]]$Subject_pubID <- inputs$Subject_pubID[i] # Add additional input column
mice_used[[i]]$Correction_factor <- inputs$Correction_factor[i] # Add additional input column
# Add additional columns from 'input_mice' tables into the mouse_list table that will be displayed # Combine with scan lists for that subject
data_used[[i]]$Subject_pubID <- inputs$Subject_pubID[i] row_filepath_scans <- file.path(here::here(), 'experiments',inputs$Data_type[i], inputs$Facility_name_YYYY_month[i], "metadata_tables",inputs$Metadata_file_scan[i])
data_used[[i]]$Correction_factor <- inputs$Correction_factor[i] # Add additional input column tmp_tbl_scans <- read.csv(row_filepath_scans) %>% filter(Subject_ID == inputs$Subject_ID[i],row)
scans_used[[i]] <- full_join(x=mice_used[[i]],
y = tmp_tbl_scans,
by=join_by("Subject_ID"),keep=FALSE)
} }
# Gather all rows elements in a table # Gather list elements in a table
data_used <- do.call(rbind,data_used) mice_used <- do.call(rbind,mice_used)
scans_used <- do.call(rbind,scans_used)
# Change position of some columns #Change position of some columns
data_used <- relocate(data_used, Correction_factor, .before = 7) mice_used <- relocate(mice_used, Correction_factor, .before = 7)
data_used <- relocate(data_used, Subject_pubID, .before = 1) mice_used <- relocate(mice_used, Subject_pubID, .before = 1)
scans_used <- relocate(scans_used, Correction_factor, .before = 7)
scans_used <- relocate(scans_used, Subject_pubID, .before = 1)
```
::: {.panel-tabset}
## Mice and scans info
```{r}
DT::datatable(mice_used, filter = 'top', rownames = FALSE)
```
## Mice info
```{r}
DT::datatable(scans_used, filter = 'top', rownames = FALSE)
```
#Display table
DT::datatable(data_used, filter = 'top')
```
:::
Metadata_file,Data_type,Facility_name_YYYY_month,Subject_ID,Subject_pubID,Correction_factor Metadata_file_scan, Metadata_file_mouse,Data_type,Facility_name_YYYY_month,Subject_ID,Subject_pubID,Correction_factor
Mouse_list_ESRF_2021_November.csv,synchrotron_microCT,ESRF_2021_November,Mouse19,Exp1,1.024 Scan_list_ESRF_2021_November.csv,Mouse_list_ESRF_2021_November.csv,synchrotron_microCT,ESRF_2021_November,Mouse19,Exp1,1.024
Mouse_list_ESRF_2021_November.csv,synchrotron_microCT,ESRF_2021_November,Mouse21,Exp2,0.508 Scan_list_ESRF_2021_November.csv,Mouse_list_ESRF_2021_November.csv,synchrotron_microCT,ESRF_2021_November,Mouse21,Exp2,0.508
Mouse_list_SPring-8_2023_May.csv,synchrotron_microCT,SPring-8_2023_May,JP28,Exp3,1.024 Scan_list_SPring-8_2023_May.csv,Mouse_list_SPring-8_2023_May.csv,synchrotron_microCT,SPring-8_2023_May,JP28,Exp3,1.024
Mouse_list_ESRF_2022_June.csv,synchrotron_microCT,ESRF_2022_June,mouse63,Exp4,0.930 Scan_list_ESRF_2022_June.csv,Mouse_list_ESRF_2022_June.csv,synchrotron_microCT,ESRF_2022_June,mouse63,Exp4,0.930
Mouse_list_ESRF_2022_June.csv,synchrotron_microCT,ESRF_2022_June,mouse50,Exp5,1 Scan_list_ESRF_2022_June.csv,Mouse_list_ESRF_2022_June.csv,synchrotron_microCT,ESRF_2022_June,mouse50,Exp5,1
Mouse_list_ESRF_2021_November.csv,synchrotron_microCT,ESRF_2021_November,Mouse17,Exp6,1 Scan_list_ESRF_2021_November.csv,Mouse_list_ESRF_2021_November.csv,synchrotron_microCT,ESRF_2021_November,Mouse17,Exp6,1
Mouse_list_CLS_2023_November.csv,synchrotron_microCT,CLS_2023_November,subjCA019,Exp7,N/A Scan_list_CLS_2023_November.csv,Mouse_list_CLS_2023_November.csv,synchrotron_microCT,CLS_2023_November,subjCA019,Exp7,N/A
\ No newline at end of file \ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment