Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
\subsection*{Sensitivity analysis}
As discussed before, the post-hoc specification of equivalence margins and the
choice of the prior distribution for the SMD under the alternative $H_{1}$ is
debatable and controversial. Commonly used margins in clinical research are much
more stringent; for instance, in oncology, a margin of $\Delta = \log(1.3)$ is
commonly used for log odds/hazard ratios, whereas in bioequivalence studies a
margin of \mbox{$\Delta = \log(1.25) % = \Sexpr{round(log(1.25), 2)}
$} is the convention \citep[chapter 22]{Senn2008}. These margins would
translate into margins of $\Delta
= % \log(1.3)\sqrt{3}/\pi =
\Sexpr{round(log(1.3)*sqrt(3)/pi, 2)}$ and $\Delta = % \log(1.25)\sqrt{3}/\pi =
\Sexpr{round(log(1.25)*sqrt(3)/pi, 2)}$ on the SMD scale, respectively, using
the $\text{SMD} = (\surd{3} / \pi) \log\text{OR}$ conversion \citep[p.
233]{Cooper2019}. As for the Bayesian hypothesis testing we specified a normal
unit-information prior under the alternative while other normal priors with
smaller/larger standard deviations could have been considered.
In the sensitivity analysis in the top plot of Figure~\ref{fig:sensitivity} we
show the number of successful replications as a function of the margin $\Delta$
and for different TOST \textit{p}-value thresholds. Such an ``equivalence
curve'' approach was first proposed by \citet{Hauck1986}. We see that for
realistic margins between $0$ and $1$, the proportion of replication successes
remains below $50\%$ for the conventional $\alpha = 0.05$ level. To achieve a
success rate of $11/15 = \Sexpr{round(11/15*100, 0)}\%$, as was achieved with
the non-significance criterion from the RPCB, unrealistic margins of $\Delta >
2$ are required, highlighting the paucity of evidence provided by these studies.
Changing the success criterion to a more lenient level ($\alpha = 0.1$) or a
more stringent level ($\alpha = 0.01$) hardly changes this conclusion.
In the bottom plot of Figure~\ref{fig:sensitivity} a sensitivity analysis is
reported with respect to the choice of the prior standard deviation and the
Bayes factor threshold. It is uncommon to specify prior standard
deviations larger than the unit-information standard deviation of $2$, as this
corresponds to the assumption of very large effect sizes under the alternatives.
However, to achieve replication success for a larger proportion of replications
than the observed $\Sexpr{bfSuccesses}/\Sexpr{ntotal} =
\Sexpr{round(bfSuccesses/ntotal*100, 0)}\%$, unreasonably large prior standard
deviations have to be specified. For instance, a standard deviation of roughly
$5$ is required to achieve replication success in $50\%$ of the replications at
a lenient Bayes factor threshold of $\gamma = 3$. The standard deviation needs
to be almost $20$ so that the same success rate $11/15 = \Sexpr{round(11/15*100,
0)}\%$ as with the non-significance criterion is achieved. The necessary
standard deviations are even higher for stricter Bayes factor threshold,
such as $\gamma = 6$ or $\gamma = 10$.
\begin{figure}[!htb]
<< "sensitivity", fig.height = 6.5 >>=
## compute number of successful replications as a function of the equivalence margin
marginseq <- seq(0.01, 4.5, 0.01)
alphaseq <- c(0.01, 0.05, 0.1)
sensitivityGrid <- expand.grid(m = marginseq, a = alphaseq)
equivalenceDF <- lapply(X = seq(1, nrow(sensitivityGrid)), FUN = function(i) {
m <- sensitivityGrid$m[i]
a <- sensitivityGrid$a[i]
rpcbNull$ptosto <- with(rpcbNull, pmax(pnorm(q = smdo, mean = m, sd = so,
lower.tail = TRUE),
pnorm(q = smdo, mean = -m, sd = so,
lower.tail = FALSE)))
rpcbNull$ptostr <- with(rpcbNull, pmax(pnorm(q = smdr, mean = m, sd = sr,
lower.tail = TRUE),
pnorm(q = smdr, mean = -m, sd = sr,
lower.tail = FALSE)))
successes <- sum(rpcbNull$ptosto <= a & rpcbNull$ptostr <= a)
data.frame(margin = m, alpha = a,
successes = successes, proportion = successes/nrow(rpcbNull))
}) %>%
bind_rows()
## plot number of successes as a function of margin
nmax <- nrow(rpcbNull)
bks <- c(0, 3, 6, 9, 11, 15)
labs <- paste0(bks, " (", round(bks/nmax*100, 0), "%)")
rpcbSuccesses <- 11
marbks <- c(0, margin, 1, 2, 3, 4)
plotA <- ggplot(data = equivalenceDF,
aes(x = margin, y = successes,
color = factor(alpha, ordered = TRUE, levels = rev(alphaseq)))) +
facet_wrap(~ 'italic("p")["TOST"] <= alpha ~ "in original and replication study"',
labeller = label_parsed) +
geom_vline(xintercept = margin, lty = 3, alpha = 0.4) +
annotate(geom = "segment", x = margin + 0.25, xend = margin + 0.01, y = 2, yend = 2,
arrow = arrow(type = "closed", length = unit(0.02, "npc")), alpha = 0.9,
color = "darkgrey") +
annotate(geom = "text", x = margin + 0.28, y = 2, color = "darkgrey",
label = "margin used in main analysis",
size = 3, alpha = 0.9, hjust = 0) +
geom_hline(yintercept = rpcbSuccesses, lty = 2, alpha = 0.4) +
annotate(geom = "segment", x = 0.1, xend = 0.1, y = 13, yend = 11.2,
arrow = arrow(type = "closed", length = unit(0.02, "npc")), alpha = 0.9,
color = "darkgrey") +
annotate(geom = "text", x = -0.04, y = 13.5, color = "darkgrey",
label = "non-significance criterion successes",
size = 3, alpha = 0.9, hjust = 0) +
geom_step(alpha = 0.8, linewidth = 0.8) +
scale_y_continuous(breaks = bks, labels = labs) +
scale_x_continuous(breaks = marbks) +
coord_cartesian(xlim = c(0, max(equivalenceDF$margin))) +
labs(x = bquote("Equivalence margin" ~ Delta),
y = "Successful replications",
color = bquote("threshold" ~ alpha)) +
theme_bw() +
theme(panel.grid.minor = element_blank(),
panel.grid.major = element_blank(),
strip.background = element_rect(fill = alpha("tan", 0.4)),
strip.text = element_text(size = 12),
legend.position = c(0.85, 0.25),
plot.background = element_rect(fill = "transparent", color = NA),
legend.box.background = element_rect(fill = "transparent", colour = NA))
## compute number of successful replications as a function of the prior scale
priorsdseq <- seq(0, 40, 0.1)
bfThreshseq <- c(3, 6, 10)
sensitivityGrid2 <- expand.grid(s = priorsdseq, thresh = bfThreshseq)
bfDF <- lapply(X = seq(1, nrow(sensitivityGrid2)), FUN = function(i) {
priorsd <- sensitivityGrid2$s[i]
thresh <- sensitivityGrid2$thresh[i]
rpcbNull$BForig <- with(rpcbNull, BF01(estimate = smdo, se = so, unitvar = priorsd^2))
rpcbNull$BFrep <- with(rpcbNull, BF01(estimate = smdr, se = sr, unitvar = priorsd^2))
successes <- sum(rpcbNull$BForig >= thresh & rpcbNull$BFrep >= thresh)
data.frame(priorsd = priorsd, thresh = thresh,
successes = successes, proportion = successes/nrow(rpcbNull))
}) %>%
bind_rows()
## plot number of successes as a function of prior sd
priorbks <- c(0, 2, 10, 20, 30, 40)
plotB <- ggplot(data = bfDF,
aes(x = priorsd, y = successes, color = factor(thresh, ordered = TRUE))) +
facet_wrap(~ '"BF"["01"] >= gamma ~ "in original and replication study"',
labeller = label_parsed) +
geom_vline(xintercept = 2, lty = 3, alpha = 0.4) +
geom_hline(yintercept = rpcbSuccesses, lty = 2, alpha = 0.4) +
annotate(geom = "segment", x = 7, xend = 2 + 0.2, y = 0.5, yend = 0.5,
arrow = arrow(type = "closed", length = unit(0.02, "npc")), alpha = 0.9,
color = "darkgrey") +
annotate(geom = "text", x = 7.5, y = 0.5, color = "darkgrey",
label = "standard deviation used in main analysis",
size = 3, alpha = 0.9, hjust = 0) +
annotate(geom = "segment", x = 0.5, xend = 0.5, y = 13, yend = 11.2,
arrow = arrow(type = "closed", length = unit(0.02, "npc")), alpha = 0.9,
color = "darkgrey") +
annotate(geom = "text", x = 0.05, y = 13.5, color = "darkgrey",
label = "non-significance criterion successes",
size = 3, alpha = 0.9, hjust = 0) +
geom_step(alpha = 0.8, linewidth = 0.8) +
scale_y_continuous(breaks = bks, labels = labs, limits = c(0, nmax)) +
scale_x_continuous(breaks = priorbks) +
coord_cartesian(xlim = c(0, max(bfDF$priorsd))) +
labs(x = "Prior standard deviation",
y = "Successful replications ",
color = bquote("threshold" ~ gamma)) +
theme_bw() +
theme(panel.grid.minor = element_blank(),
panel.grid.major = element_blank(),
strip.background = element_rect(fill = alpha("tan", 0.4)),
strip.text = element_text(size = 12),
legend.position = c(0.85, 0.25),
plot.background = element_rect(fill = "transparent", color = NA),
legend.box.background = element_rect(fill = "transparent", colour = NA))
grid.arrange(plotA, plotB, ncol = 1)
@
\caption{Number of successful replications of original null results in the RPCB
as a function of the margin $\Delta$ of the equivalence test
($p_{\text{TOST}} \leq \alpha$ in both studies for
$\alpha = \Sexpr{rev(alphaseq)}$) or the standard deviation of the zero-mean
normal prior distribution for the SMD effect size under the alternative
$H_{1}$ of the Bayes factor test ($\BF_{01} \geq \gamma$ in both studies for
$\gamma = \Sexpr{bfThreshseq}$).}
\label{fig:sensitivity}
\end{figure}
<< "sessionInfo1", eval = Reproducibility, results = "asis" >>=
## print R sessionInfo to see system information and package versions
## used to compile the manuscript (set Reproducibility = FALSE, to not do that)
cat("\\newpage \\section*{Computational details}")
@
<< "sessionInfo2", echo = Reproducibility, results = Reproducibility >>=
cat(paste(Sys.time(), Sys.timezone(), "\n"))