Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "44a7d641-fbb9-47d5-a54a-826a597d216f",
"metadata": {},
"outputs": [],
"source": [
"!pip install matplotlib"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "dd9cf71b-e692-4c35-864a-428259e8bf7b",
"metadata": {},
"outputs": [],
"source": [
"from datetime import datetime\n",
"from matplotlib.dates import DateFormatter, MonthLocator\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"class ProjectDataProcessor:\n",
" \"\"\"Process data for latent heat flux comparison between FLUXNET and MODIS dataset\"\"\"\n",
" \n",
" def __init__(self, FLUXNET_file_path, MODIS_file_path):\n",
" \n",
" self.FLUXNET_file_path = FLUXNET_file_path\n",
" self.MODIS_file_path = MODIS_file_path\n",
" \n",
" self.data_FLUXNET = {}\n",
" self.data_MODIS = {}\n",
" \n",
" self.data = {}\n",
" \n",
" self._load_FLUXNET_data()\n",
" self._load_MODIS_data()\n",
" \n",
" self._merge_datasets()\n",
" self._compute_delta()\n",
" \n",
" \n",
" def _load_FLUXNET_data(self):\n",
" \"\"\"Load latent heat flux data from FLUXNET dataset\"\"\"\n",
" \n",
" date_list = []\n",
" value_list = []\n",
" \n",
" with open(self.FLUXNET_file_path, 'r', encoding='utf-8') as f:\n",
" \n",
" first_line = f.readline().split(',')\n",
" ts_index = first_line.index('TIMESTAMP')\n",
" le_index = first_line.index('LE_F_MDS')\n",
" \n",
" for line in f:\n",
" line = line.split(',')\n",
" date = datetime.strptime(line[ts_index], '%Y%m%d')\n",
" value = line[le_index]\n",
" date_list.append(date)\n",
" value_list.append(float(value))\n",
" \n",
" for year in range(min(date_list).year, max(date_list).year + 1):\n",
" self.data_FLUXNET[year] = {'dates':[], 'values':[]}\n",
" \n",
" for date, value in zip(date_list, value_list):\n",
" self.data_FLUXNET[date.year]['dates'].append(date)\n",
" self.data_FLUXNET[date.year]['values'].append(value)\n",
" \n",
" \n",
" def _load_MODIS_data(self):\n",
" \"\"\"Load latent heat flux data from MODIS dataset\"\"\"\n",
" \n",
" date_list = []\n",
" value_list = []\n",
" \n",
" with open(self.MODIS_file_path, 'r', encoding='utf-8') as f:\n",
" \n",
" for line in f:\n",
" line = line.split(',')\n",
" date = datetime.strptime(line[2], 'A%Y%j')\n",
" value = line[5:][144]\n",
" \n",
" if value != 'F':\n",
" date_list.append(date)\n",
" value_list.append(float(value)/ (24*60*60))\n",
" \n",
" for year in range(min(date_list).year, max(date_list).year + 1):\n",
" self.data_MODIS[year] = {'dates':[], 'values':[]}\n",
" \n",
" for date, value in zip(date_list, value_list):\n",
" self.data_MODIS[date.year]['dates'].append(date)\n",
" self.data_MODIS[date.year]['values'].append(value)\n",
" \n",
" \n",
" def _merge_datasets(self):\n",
" \"\"\"Merge datasets into one dataset with only shared values\"\"\"\n",
" \n",
" for year in range(1990, 2030):\n",
" if year in self.data_FLUXNET.keys() and year in self.data_MODIS.keys():\n",
" self.data[year] = {'dates':[], 'values':{'FLUXNET':[], 'MODIS':[]}}\n",
" \n",
" for year in self.data.keys():\n",
" \n",
" for date, value in zip(self.data_FLUXNET[year]['dates'], self.data_FLUXNET[year]['values']):\n",
" if date in self.data_MODIS[year]['dates']:\n",
" self.data[year]['dates'].append(date)\n",
" self.data[year]['values']['FLUXNET'].append(value)\n",
" \n",
" for date, value in zip(self.data_MODIS[year]['dates'], self.data_MODIS[year]['values']):\n",
" if date in self.data_FLUXNET[year]['dates']:\n",
" self.data[year]['values']['MODIS'].append(value)\n",
" \n",
" \n",
" def _compute_delta(self):\n",
" \"\"\"Compute absolute and relative deltas between datasets\"\"\"\n",
" \n",
" for year in self.data.keys():\n",
" self.data[year]['deltas_abs'] = {'FLUXNET':[], 'MODIS':[]}\n",
" self.data[year]['deltas_rel'] = {'FLUXNET':[], 'MODIS':[]}\n",
" for f_value, m_value in zip(self.data[year]['values']['FLUXNET'], self.data[year]['values']['MODIS']):\n",
" f_delta_abs = f_value - m_value\n",
" m_delta_abs = m_value - f_value\n",
" f_delta_rel = f_delta_abs / m_value\n",
" m_delta_rel = m_delta_abs / f_value\n",
" self.data[year]['deltas_abs']['FLUXNET'].append(f_delta_abs)\n",
" self.data[year]['deltas_abs']['MODIS'].append(m_delta_abs)\n",
" self.data[year]['deltas_rel']['FLUXNET'].append(f_delta_rel)\n",
" self.data[year]['deltas_rel']['MODIS'].append(m_delta_rel)\n",
" \n",
" \n",
" def plot_values(self, *years):\n",
" \"\"\"Plot latent heat flux data from FLUXNET and MODIS given any number of available years\"\"\"\n",
" \n",
" for year in years:\n",
" if year not in self.data.keys():\n",
" raise ValueError('Make sure all specified years are available in both datasets')\n",
" \n",
" fig, axs = plt.subplots(len(years), 1, figsize=(10, 5*len(years)))\n",
" \n",
" for count, year in enumerate(years):\n",
" x = self.data[year]['dates']\n",
" \n",
" y_f = self.data[year]['values']['FLUXNET']\n",
" y_m = self.data[year]['values']['MODIS']\n",
" \n",
" if len(years) > 1:\n",
" axs[count].plot(x, y_f, label='FLUXNET ' + str(year))\n",
" axs[count].plot(x, y_m, label='MODIS ' + str(year))\n",
" axs[count].set_xlim([datetime.strptime('1.1.'+str(year), '%d.%m.%Y'),\n",
" datetime.strptime('31.12.'+str(year), '%d.%m.%Y')])\n",
" axs[count].set_ylabel('Latent Heat Flux [W m-2]')\n",
" axs[count].xaxis.set_major_locator(MonthLocator())\n",
" axs[count].xaxis.set_major_formatter(DateFormatter('%b'))\n",
" axs[count].set_title(year)\n",
" axs[count].legend()\n",
" \n",
" else:\n",
" axs.plot(x, y_f, label='FLUXNET ' + str(year))\n",
" axs.plot(x, y_m, label='MODIS ' + str(year))\n",
" axs.set_xlim([datetime.strptime('1.1.'+str(year), '%d.%m.%Y'),\n",
" datetime.strptime('31.12.'+str(year), '%d.%m.%Y')])\n",
" axs.set_ylabel('Latent Heat Flux [W m-2]')\n",
" axs.xaxis.set_major_locator(MonthLocator())\n",
" axs.xaxis.set_major_formatter(DateFormatter('%b'))\n",
" axs.set_title(year)\n",
" axs.legend()\n",
" \n",
" plt.show()\n",
" \n",
" \n",
" def plot_deltas(self, *years, mode='rel', base='FLUXNET'):\n",
" \"\"\"Plot delta of latent heat flux data from FLUXNET and MODIS given any number of available years\"\"\"\n",
" \n",
" if mode == 'abs':\n",
" delta_type = 'deltas_abs'\n",
" ylabel = 'Absolute Difference in Latent Heat Flux [W m-2]'\n",
" elif mode == 'rel':\n",
" delta_type = 'deltas_rel'\n",
" ylabel = 'Relative Difference in Latent Heat Flux'\n",
" else:\n",
" raise ValueError('Mode not valid')\n",
" \n",
" for year in years:\n",
" if year not in self.data.keys():\n",
" raise ValueError('Make sure all specified years are available in both datasets')\n",
" \n",
" fig, axs = plt.subplots(len(years), 1, figsize=(10, 5*len(years)))\n",
" \n",
" for count, year in enumerate(years):\n",
" x = self.data[year]['dates']\n",
" \n",
" y = self.data[year][delta_type][base]\n",
" \n",
" if len(years) > 1:\n",
" axs[count].bar(x, y, width=8, color=np.where(np.array(y)>0, 'tab:blue', 'tab:orange'))\n",
" axs[count].set_xlim([datetime.strptime('1.1.'+str(year), '%d.%m.%Y'),\n",
" datetime.strptime('31.12.'+str(year), '%d.%m.%Y')])\n",
" axs[count].set_ylabel(ylabel)\n",
" axs[count].xaxis.set_major_locator(MonthLocator())\n",
" axs[count].xaxis.set_major_formatter(DateFormatter('%b'))\n",
" axs[count].set_title(year)\n",
" \n",
" else:\n",
" axs.bar(x, y, width=8, color=np.where(np.array(y)>0, 'tab:blue', 'tab:orange'))\n",
" axs.set_xlim([datetime.strptime('1.1.'+str(year), '%d.%m.%Y'),\n",
" datetime.strptime('31.12.'+str(year), '%d.%m.%Y')])\n",
" axs.set_ylabel(ylabel)\n",
" axs.xaxis.set_major_locator(MonthLocator())\n",
" axs.xaxis.set_major_formatter(DateFormatter('%b'))\n",
" axs.set_title(year)\n",
" \n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "b5ff9ec5-2ccf-408f-98b5-1df96f2d5d26",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Years available: [2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014]\n"
]
}
],
"source": [
"FLUXNET_file_path = 'data/Oensingen_FLUXNET/FLX_CH-Oe2_FLUXNET2015_FULLSET_DD_2004-2014_1-4.csv'\n",
"MODIS_file_path = 'data/Oensingen_MODIS/LE_500m_filtered_scaled.csv'\n",
"\n",
"oensingen = ProjectDataProcessor(FLUXNET_file_path, MODIS_file_path)\n",
" \n",
"print(f'Years available: {list(oensingen.data.keys())}')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "2ccfe8b7-b77c-4d27-abf8-af0f7c0db240",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAJOCAYAAAAZJhvsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADkCElEQVR4nOzdd3iUVfbA8e+dSa+kkYQESOg1hCZiBekIKupiB+x1XVF01W26+3Otq4JtF0VBxa4IoqJIEQWk9yYtQEIoSQjp/f7+eGdCeibJtCTn8zzzkLxtTkIyOXPufc9VWmuEEEIIIYTrmFwdgBBCCCFEaycJmRBCCCGEi0lCJoQQQgjhYpKQCSGEEEK4mCRkQgghhBAuJgmZEEIIIYSLSUImhBBCCOFikpAJIVospZS3UmqOUuqIUipbKbVVKTWuwv4RSqm9Sqk8pdQKpVTHCvsmK6XWWPatrOHaiUqpTZb9m5RSic75qoQQLZEkZEKIlswDOAZcCgQDfwU+U0rFKaXCga+AvwGhwEbg0wrnZgCvAs9VvahSygtYCHwIhADzgIWW7UII0WBKOvULIVoTpdR24GkgDJimtb7Ast0fSAP6a633Vjj+DuBmrfWwCttGA+8BsdryIqqUOgrcpbVe4qyvRQjRckiFTAjRaiilIoFuwC6gN7DNuk9rnQsctGyvT29gu678jna7jecKIUQ1kpAJIVoFpZQnMB+YZ6mABQBnqxx2Fgi04XJNOVcIIaqRhEwI0eIppUzAB0AR8IBlcw4QVOXQICDbhks25VwhhKhGEjIhRIumlFLAHCASuEZrXWzZtQvoV+E4f6CzZXt9dgEJlmtbJdh4rhBCVCMJmRCipXsL6AlM1FrnV9i+AOijlLpGKeUD/B1jXtheAKWU2bLdAzAppXwsw54AK4FS4EFLaw1r1W25E74eIUQLJHdZCiFaLEtfsSSgECipsOturfV8pdRI4HWgI7AO467LJMu50zDupKxontZ6mmV/f+AdoBewB7hda73FUV+LEKJlk4RMCCGEEMLFZMhSCCGEEMLFJCETQgghhHAxSciEEEIIIVxMEjIhhBBCCBfzcHUATREeHq7j4uJcHYYQQgghRL02bdqUprWOqGlfs07I4uLi2Lhxo6vDEEIIIYSol1LqSG37ZMhSCCGEEMLFJCETQgghhHAxSciEEEIIIVysWc8hE0IIIVqD4uJikpOTKSgocHUowgY+Pj7Exsbi6elZ/8EWkpAJIYQQbi45OZnAwEDi4uJQSrk6HFEHrTXp6ekkJycTHx9v83kyZCmEEEK4uYKCAsLCwiQZawaUUoSFhTW4mikJmRBCCNEMSDLWfDTm/0oSMiGEEEIIF5OETAjRamTkFnHgVLarwxCiWTKbzSQmJpY/kpKSWLlyJRMmTKh03Ny5c3nggQcqbRs2bBgbN24kOzubzp07s3//fsC4WaFv376sW7cOMCpLjzzySPl5L730Ek899RQATz31FDExMZVi+PTTT8s/DggIoHv37iQmJjJlypRKz79161aGDh1K7969SUhI4NNPPy3fd/jwYYYMGUKXLl247rrrKCoqAmDVqlUMGDAADw8Pvvjii0rXmzdvHl27dqVr167MmzevCd/VcyQhE0K0Gi/+sJexr/7Ch7/V2ixbCFELX19ftm7dWv5ozNKFgYGBPPvss+UJ20svvcQFF1zAkCFDAPD29uarr74iLS2txvOnT59eKYbrrruu/ONBgwYxf/58tm7dyvvvv1/pPD8/P95//3127drFkiVLeOihh8jMzATgz3/+M9OnT+fAgQOEhIQwZ84cADp06MDcuXO58cYbK10rIyODp59+mnXr1rF+/Xqefvppzpw50+DvRVWSkAkhWo3T2UWUlGn++vVO/r5wJ8WlZa4OSYhWZ/LkyQC88MIL/Pe//+XZZ58t3+fh4cFdd93FK6+8Ytfn7NatG127dgWgXbt2tG3bltOnT6O1Zvny5Vx77bUATJ06la+//howlmdMSEjAZKqcKv3www+MGjWK0NBQQkJCGDVqFEuWLGlyjNL2QgjRamQXFDOwYwgDO4Ywe9UhDp7O4Y0bB9DGz8vVoQlhs6e/2cXu41l2vWavdkH8Y2LvOo/Jz88nMTERgPj4eBYsWNDo55s5cyY9e/Zk9uzZhIaGVtp3//33k5CQwGOPPVbtvFdeeYUPP/wQgJCQEFasWNHg516/fj1FRUV07tyZ9PR02rRpg4eHkQ7FxsaSkpJS5/kpKSm0b9++/HNbzrGFJGRCiFYjp7CEqCAfnhzfk26RgTz51Q6uemM170wdTJe2Aa4OTwi3Zh2yrE9tdxhW3L5kyRKio6PZuXNnteOCgoKYMmUKs2bNwtfXt9K+6dOnM2PGjIYFXkFqaiq33HIL8+bNq1b5cjVJyIQQrUZ2QQld2xove9cOjCU+3I+7P9jEpDdX89oN/RnWva2LIxSifvVVslwtLCys2pyqjIwMwsPDATh+/DizZs1i/fr1DB8+nNtvv52EhIRKxz/00EMMGDCAW2+91W5xZWVlcfnll/PMM89w/vnnl8eamZlJSUkJHh4eJCcnExMTU+d1YmJiWLlyZfnnycnJDBs2rMnxuVd6KIQQDpRdUEygz7mlTAZ2DGXhAxcRG+LHbXM3MOfXw2itXRihEM3f4MGDWb16NSdOnABg48aNFBYWlg/zTZ8+nSeffJLY2Fhefvll7r///mq/d6GhoUyePLl8gn1TFRUVMWnSJKZMmVI+XwyMqt3w4cPL76KcN28eV155ZZ3XGjNmDD/++CNnzpzhzJkz/Pjjj4wZM6bJMUpCJoRoFbTWZBeUEOhTeWAgpo0vX9wzlNG9ovjX4t08/uUOikpksr8Qtlq2bBmxsbHlj0OHDjFz5kzGjx9PYmIiDz30EB9//DEmk4mlS5dy9OhRbr/9dgAmTpxISEhItbsiAR555JFqd1u+8sor1Vpv2OKzzz5j1apVzJ07t/xc6/Dr888/z8svv0yXLl1IT08vj23Dhg3Exsby+eefc/fdd9O7t1GZDA0N5W9/+xuDBw9m8ODB/P3vf682D64xVHN+Nzho0CC9ceNGV4chhGgG8otK6fn3Jfx5bA/uHda52v6yMs2rP/3OrOUHGBwXwls3DyQ8wNsFkQpR3Z49e+jZs6erwxANUNP/mVJqk9Z6UE3HS4VMCNEqZBcUA1SrkFmZTIqHR3fntRv6sz35LFe+vpo9qfa9k00IIWojCZkQwi0Ul5bx8o/7SM8pdMj1swpKgNoTMquJ/drx+T1DKSkr45q31vDjrhMOiUcIISqShEwI4Ra2Hstk1vIDLN97yiHXt1bIgipM6q9NQmwbFj1wEV3bBnDPh5vYe0IqZUIIx5KETAjhFvZahgezLZUse8u2sUJmFRnkw9xbz8PTbGLemiSHxCSEEFaSkAkh3MLeE8ai31mWSpa9nUvI6q+QWYX4ezGpfwwLtqSQmVfkkLiEEAIkIRNCuIl9loTMcRUyI9ELsLFCZjX1gjgKisv4dMMxR4QlhBCAJGRCCDegtS5PyLLyHV0ha1hC1jM6iCHxoby/9gilZc23TZAQTaWU4uabby7/vKSkhIiICCZMmFC+7euvvyYhIYGePXvSt2/f8oW6AaZNm0Z8fDz9+vWjW7duTJkyheTk5PL9cXFx5X3HnnnmGXr37k1CQgKJiYmsW7euWjyPPvooPXr0ICEhgUmTJpGZmVm+79lnn6VLly50796dH374oXz7bbfdRtu2benTp0+la2VkZDBq1Ci6du3KqFGjqq004AySkAkhXC4lM5/sQiNhctyQZTFKQYBXw1eMu/XCOFIy8/lpz0kHRCZE8+Dv78/OnTvJz88HYOnSpZWWGdq2bRszZsxg4cKF7Nmzh0WLFjFjxgy2b99efsyLL77Itm3b2LdvH/379+eyyy6jqKjydIC1a9eyePFiNm/ezPbt2/npp58qLeZtNWrUKHbu3Mn27dvp1q0bzz77LAC7d+/mk08+YdeuXSxZsoT77ruP0tJSwEgKlyxZUu1azz33HCNGjGD//v2MGDGC5557runfsAaShEwI4XLW6piXh8lhQ5ZZBSUEeHlgMtW88HFdRvaMpF2wD3NXJ9k/MCGakfHjx/Ptt98C8PHHH3PDDTeU73vppZd48skniY+PByA+Pp4nnniCF198sdp1lFJMnz6dqKgovv/++0r7UlNTCQ8Px9vbaMwcHh5Ou3btql1j9OjReHgYb7DOP//88mrbwoULuf766/H29iY+Pp4uXbqwfv16AC655JIau+ovXLiQqVOnAjB16tRKlT1nkcXFhRAuZ53QnxjbxqGT+hs6XGnlYTZxy9A4nl+yl30nsukeFWjn6IRogO8fhxM77HvNqL4wrv6q0PXXX88///lPJkyYwPbt27ntttv45ZdfANi1axczZsyodPygQYN44403ar3egAED2Lt3b6X1I0ePHs0///lPunXrxsiRI7nuuuu49NJL64zr3Xff5brrrgMgJSWlfPFwgNjYWFJSUuo8/+TJk0RHRwMQFRXFyZPOr4Y7rEKmlHpXKXVKKbWzwrYXlVJ7lVLblVILlFJtKux7Qil1QCm1TynV9FU6hRDNxt4T2cS08aVdGx+y8h1TIcspLG7QHZZVXT+4Pd4eJuZKCwzRiiUkJJCUlMTHH3/M+PHjm3y9mpZvDAgIYNOmTcyePZuIiAiuu+465s6dW+s1nnnmGTw8PLjpppuaHA8Y1TulGl5JbypHVsjmAq8DFVcMXQo8obUuUUo9DzwB/Fkp1Qu4HugNtAN+Ukp101qXOjA+IYSb2Hciix5RgQT5epbfDWlvTamQgdEC46rEGBZsSebxsT0I9mt8clfRukPphPp70TVSqm7CRjZUshzpiiuuYMaMGaxcuZL09PTy7b169WLTpk3069evfNumTZvKF+WuyZYtWxgxYkS17WazmWHDhjFs2DD69u3LvHnzmDZtWrXj5s6dy+LFi1m2bFl5EhUTE8OxY+fuik5OTq40160mkZGRpKamEh0dTWpqKm3btq3zeEdwWIVMa70KyKiy7UettfXt729ArOXjK4FPtNaFWuvDwAHgPEfFJoRwH4UlpRw8nUv3qECCfDzJKiip8V1zUzU1IYMKLTA2HrVLTAdP53DLu+t5fsleu1xPCGe47bbb+Mc//kHfvn0rbZ8xYwbPPvssSUlJACQlJfHvf/+bRx55pNo1tNbMmjWL1NRUxo4dW2nfvn372L9/f/nnW7dupWPHjtWusWTJEl544QUWLVqEn59f+fYrrriCTz75hMLCQg4fPsz+/fs577y6U4orrriCefPmATBv3rxKQ6jO4spJ/bcB1pl8MUDFJj/Jlm3VKKXuUkptVEptPH36tINDFEI42sFTuZSWaXpEBxHo40FpmSavyP7F8eyCpg1ZAvRqF8R5dmqBUVamefzL7RSVlHEsI79J1xLCmWJjY3nwwQerbU9MTOT5559n4sSJ9OjRg4kTJ/LCCy+QmJhYfsyjjz5a3vZiw4YNrFixAi8vr0rXycnJYerUqfTq1YuEhAR2797NU089Ve35HnjgAbKzsxk1ahSJiYncc889APTu3ZvJkyfTq1cvxo4dyxtvvIHZbAbghhtuYOjQoezbt4/Y2FjmzJkDwOOPP87SpUvp2rUrP/30E48//ridvlu2c8mkfqXUX4ASYH5Dz9VazwZmAwwaNEiaAgnRzO07aSyZ1CMqkFxL64vsghL8ve378mSPChnArRfEce/8zSzbc5LRvaMafZ35646wIekMMW18ST6Th9baJfNWhLBVTk5OtW3WYUWrq6++mquvvrrG8+uaBwaUV9bCw8NZs2ZNvfEcOHCg1n1/+ctf+Mtf/lJt+8cff1zj8WFhYSxbtqze53Qkp1fIlFLTgAnATfrcuEQKULHJSKxlmxCihdt7IhtPsyI+3L88YXLEnZZGQtb0eV+jehktMOatTWr0NVIy83nu+71c1CWcWy+MI7eolMw8x8ydE0I0D05NyJRSY4HHgCu01nkVdi0CrldKeSul4oGuwHpnxiaEcI29qdl0aRuIp9lEkCVhsne3/oLiUopKy+xSIfMwm7h5aEdWH0jn95PZDT5fa81fFuygTMOzV/clNsSY+5KSKcOWQrRmjmx78TGwFuiulEpWSt2OcddlILBUKbVVKfVfAK31LuAzYDewBLhf7rAUonXYdyKbHpa+XkG+RkJm7+aw1usF2SEhA7h+cAe8PEzMa0QLjIVbj7Ny32lmjOlO+1A/YkN8AUg+k1fPmaK1c8TNLsIxGvN/5bA5ZFrrG2rYPKeO458BnnFUPEII95OZV8SJrILyRquOGrK0ttKwx5AlQKi/F1cltuOrzSk8Nsb2FhjpOYU8/c0uEtu3YdoFcQC0t1TIks9IhUzUzsfHh/T0dMLCwmSuoZvTWpOeno6Pj0+DzpNO/UIIl7F26C+vkDloyLKxC4vXZeoFcXy2MZnPNx3jjos72XTO09/sJqewhBeuTcBsWcIpyNeDQG8PSchEnWJjY0lOTka6CzQPPj4+xMbG1n9gBZKQCSFcZl95QhYEVKyQOWbIMsCOd272bhfMeXGhzFubxK0XxpcnWLVZtucki7Yd56GRXelWoQmsUoqYEF9JyESdPD09y9eIFC2TLC4uhHCZvSeyCfb1JDLIWETYx9OMl4fJ7YcsraZdGMexjHyW7z1V7/P/ZcFOukcGct+wLtX2x4b4yhwyIVo5SciEEC6z17JkUsU5MUE+nnZfz9IRQ5YAo3tFEh3sU+/k/ue+38up7AKevzYBL4/qL7uxIX6knMmXSdtCtGKSkAkhXKKsTPN7hTssrYJ8Pey+nqW14hZk5wqZh9nEzed35NcDaeyvpQXGb4fSmb/uKLddGE9i+zY1HhMb4kt2YYnDFlYXQrg/SciEEC6RkplPblEp3S3zx6wCLetZ2lP5HDI7V8gAbjjP0gKjhkaxBcWlPPHVDtqH+vLw6G61XiOmjaX1RaYMWwrRWklCJoRwiT2pliWToqtUyHw87H6XZU5hCf5e5non3jdGqL8XV/Zrx5ebUjhbJe5Xf9rP4bRcnrs6AT+v2pPBWGl9IUSrJwmZEMIlrHdYVrzjEIzmsPYesrTHwuJ1mXpBHPnFpXy+8Vj5tp0pZ3n7l0NcN6g9F3YJr/P8c81hJSETorWShEwI4RJ7T2bTPtS3WiuKIB8PhwxZ2ntCf0V9YoIZHBfC+2uPUFqmKS4t47EvthPq78WT43vWe34bP0/8vcxyp6UQrZgkZEIIl9ibmlXef6wi4y5L+zeGdWRCBjDtgniOZuSxct8pZq86xO7ULP51ZR+buvhbe5GlSIVMiFZLGsMKIZyuoLiUpPQ8xveNrrYvyNeTwpIyCktK8fYw2+X5sguKaePnZZdr1WZ070iignx46cffOXg6h/F9oxjbJ8rm82ND/GTIUohWTCpkQginO3Aqh9IyXb6GZUXWSpY9Fxh3RoXM02zilqEd2ZOaha+nmaeu6N2g86U5rBCtmyRkQgin21dlDcuKHLGeZVZBiUMn9VtdP7g9PaODeGZSH9oGNmxh4dgQX7IKSuy+SoEQonmQIUshhNPtPZGFl4eJuDD/avuCfB1RISsmyMEVMoCwAG++/9PFjTo3po3R+iLlTD5B0Y5PHoUQ7kUqZEIIp9t7IpuubQPwMFd/CbJWsuxVKSoqKaOwpMzhQ5ZNJa0vhGjdJCETQjjdvhPZNc4fg4pDlvapkDlqYXF7O5eQyTwyIVojSciEEE6VkVvEqexCetbQ8gIqDlnap0JWvmySt3tXyEL9vfD1NEuFTIhWShIyIYRT7T1hLJlUW4XM3kOW1oTM3YcspReZEK2bJGRCCKeq6w5LAH8vMybV+oYswdL6QhYYF6JVkoRMCOFUe1OzCfX3IiLQu8b9SikCfey3nmVWM6mQgbUXmVTIhGiNJCETQjjV3pPZdI8MRClV6zFBvvZbzzKn0LhOUDOokMW08SMzr7g8ZiFE6yEJmRDCacrKNL/XcYellT3Xszw3ZNk8KmSAzCMTohWShEwI4TRHM/LILy6lZ3TdCVmgj4fdGsOW32XZjBIyaX0hROsjCZkQwmn2Wib0d6+l5YVVkI+nHe+yLMbX04xnDU1o3U1siNGtX+aRCdH6uP8rlBCixdh3IhuloFtkQJ3HBfnac8jS8QuL20t4gBfeHiapkAnRCtX5KqWUetiGa+Rqrf9np3iEEC3Y3hNZdAz1w8+r7gTJ3kOWzSUhK+9FlikVMiFam/oqZI8CAUBgHY9HHBmgEKLlqGvJpIqCfDzJLiyhtEw3+TmzCoqbRQ8yq9gQPxmyFKIVqu9t4wda63/WdYBSyt+O8QghWqiC4lKS0nOZ0K9dvccG+RoJVE5hCcG+TUummlOFDIyJ/TtTzro6DCGEk9VZIdNaP1bfBeo6Rin1rlLqlFJqZ4VtoUqppUqp/ZZ/QyzblVJqllLqgFJqu1JqQEO+ECGEe9t/MocyDT1tqJBZEyh7zCPLLig+14Ns3f9g3hWQfrDJ13WUmDa+ZOQWkVckvciEaE3qndSvlOqhlBqhlAqosn2sDdefC1Q97nFgmda6K7DM8jnAOKCr5XEX8JYN1xdCNBN76lnDsqIgO65nWalCtmEOHP4Z/ncp7PyyydeuprQYdi+CotxGX0J6kQnROtWZkCmlHgQWAn8Ediqlrqyw+9/1XVxrvQrIqLL5SmCe5eN5wFUVtr+vDb8BbZRS0fV+BUKIZmHfiWx8PE10DKt/lkOQr5FA2WNif3ZBCQHeHnA2GdL2wfn3Qdse8MVtsPhhKC5o8nMAcGw9/O8S+OwWWPNaoy8jrS+EaJ3qq5DdCQzUWl8FDAP+ppT6k2Vf7eue1C1Sa51q+fgEEGn5OAY4VuG4ZMu2SpRSdymlNiqlNp4+fbqRIQghnG3fiWy6RQZiNtX/0lFeIWvikGVxaRn5xaXGpP6DK4yN/W+BW7+HC/4IG+fAnJFNG8LMz4TF02HOaCjIgtDOsHdxoy/XXprDCtEq1ZeQmbTWOQBa6ySMpGycUuplGp+QldNaa6BBt1FprWdrrQdprQdFREQ0NQQhhJPsPZFF98j6hyuh4pBl0ypkORUXFj+4HAKioG1PMHvC6P+DGz6BzGONG8LUGnZ+BW+cB5vmGpW3+9fBoFvhxA44k9SomMMDvPEym6RCJkQrU19CdlIplWj9xJKcTQDCgb6NfM6T1qFIy7+nLNtTgPYVjou1bBNCNHNpOYWk5RTZNH8MKg5ZNq1CZh3yDPRWcGgFdL4MKi5q3n0c3PNrhSHM6bYNYZ45Ah9Nhi9uhcAouHM5jP03eAdA9/HGMXu/a1TMJpPRiyxZepEJ0arUl5BNwRhWLKe1LtFaTwEuaeRzLgKmWj6eijFHzbp9iuVuy/OBsxWGNoUQzYnWxjDg8a2AMVwJ0DO67iWTrAK8rXdZNq1CZr0pICZ/P+SfMRKyqtq0twxhPggb34V3RkLagZovWFoCq2fBm+dD0moY8yzcsRza9T93TFhnaNsL9n7b6LhjQ3ylQiZEK1Nncx6tdXLVbUqpuyzDhqvru7hS6mOMYc5wpVQy8A/gOeAzpdTtwBFgsuXw74DxwAEgD7i1AV+HEMKVslLh+GZI2QQpm42PC84CCu5fx55UYwjS1gqZh9mEv5e5yXdZ5hQaCV1MxlpjQ6dhNR9o9oTR/4K4i2DB3TD7Upg4E/pee+6Y5E3wzZ/g5A7oNg7Gv2gkczXpMQF+eQly08E/rMFxx4b4snT3yQafJ4RovhrTLfEeYLYtB2qtb6hl14gajtXA/Y2IRwjhTPmZcHyLJQGzPLKPG/uUGSJ7Q+9JENkHljwOWz5g39k/EB7gRXiAt81PE+Trabchy7ATqyEqAQLqmXfabYwxhPnFbfDl7ZD0Cwz/K6x6Ada/bQxPTv4Aek6sPPRZVY/LjXN+/x7639zguGPa+JKWU0R+USm+XuYGny+EaH4ak5A1eTK/EKKZyTkNa2bBvu8gvcJwXmhno6oUMwBiBkJUX/D0Pbf/0ErY9gkHfEbSI8q24UqrQB+PJg9ZZhcU408+/qc2wVAb3+8Fx8K0b2H5v2D1TNj8vjEEe96dcNnfwMeGryO6HwS3N4YtG5GQWVtfpGTm06Vt3QuxCyFahsYkZBPtHoUQwj3lnIY1M42GqiUF0GUU9LveSL7a9QffkLrPHzAF9i4mOmsV0UOurfvYKoJ8PJs8ZJldUMIQ0x5UWXHN88dqY/aEUf+EjhfB5nlw0XSIHWT7+UoZVbJNc40msV4NW2EutkLrC0nIhGgdbErIlFJtMCb4xwEeylKq11o/6KjAhBAuZK2IbXjHSMT6/gEueRTCuzbsOp1HUOIfxdVZy8mIati00EAfD9Jyihr2fFVkFxRzsWkH2sMX1eH8hl+g22jj0Rg9Lod1/4UDy6DXFQ06VZrDCtH62Foh+w74DdgBlDkuHCGES9krEbMye3Ak9gqG732b3wMb1ug0yNeTQ2mNX4IIjArZePMOVNxF4GH7/DW76HCBUUHc+22DE7K2gd54mpUkZEK0IrYmZD5a64cdGokQwnXsnYhV8LP/WDqr2XQ5sRi6d7f5vCAfzyZ36jdlJdNJHYfOf2zSdRrF7GHcjbnvO2ONS7OnzaeaTIp2bXxJkV5kQrQa9S4ubvGBUupOpVS0UirU+nBoZEIIx8tNg6V/h5kJsPZ1o13Dfevg6tl2ScYA1p0NZpupN57b5huT420U6ONBdkEJugHnVBV75jfjg4bMH7OnHpdDQSYcqbdLUDVGLzJZPkmI1sLWhKwIeBFYC2yyPDY6KighhINZE7FX+xqNTq2J2DVvQ0Q3uz7VvhPZbI2YCBkH4cgam88L8vWkpEyTX1za6Ofumr2eNFMYRNhembOrzpeBh2+jmsTGtvFzyZBlQXEp93+0mR92naj/YCGE3diakD0CdNFax2mt4y2PTo4MTAjhALlpsPQf8GqCJRG7HO5f75BEDCCvqIQjGXnkdJoAXoGw5UObzz23wHgjW1+UldIzfzO7fAbV3TPMkbz8jKRs77cNqg4CxIT4cjq7kIImJKSN8d7qJL7dnsofP97CpiMZTn1uIVozWxMya/d8IURzVCkRmwk9xlsSsXcckohZ/X4yB62hc0wE9L0Gdn8NBVk2nRvo08T1LI9vJVDnsD9gcOPOt5eeEyArBVK3Nug0a+uL406cR5aRW8SbKw5wYZcwooN9uPP9TRxNl5d+IZzB1oQsF9iqlPqfUmqW9eHIwIQQdpCbXkMits7hiZjVvhNG8tUzOhD6T4HiPNj5pU3nBvlaKmSNTcgOLqcMxbGQ8xp3vr10GwvKBHsWN+i0Wltf/PIyzBnd4IqbLV5bvp/cohKemtibd6cNprRMc+vc9ZzNa9rNFUKI+tmakH0NPAOs4dwcsk0OikkI0VS56fDTU5Y5YjOh+7gKiZjz5lPtPZGNn5eZ9iF+Rjf/iJ42D1sG+TRxgfGDy9mt4zHXt1ySo/mFQscLGzyP7Fxz2AoJWdZx+Pl5OLYOku07jfdIei4f/naE6wa3p2tkIJ0jAvjvzQM5mpHHvfM3UVQiHY+EcCSbEjKt9byaHo4OTgjRQBUTsV9fPZeIXTvHJRPb96Zm0zUyEJNJGfO4BtwCKRvh1J56zw30aUKFrCALnbyen0v7lA99ulSPCXB6D6QftPmUyCAfPEyq8p2WK/4NugzMXrBrgV1DfOGHfXiYTEwfea5yOrRzGM9encCag+n89esdTbrjVQhRN1srZEIId5abDj89bbSv+PVV6D4W7vvNZYkYgNaafSez6RkVeG5jwnVg8oTNH9R7fpCvpUJW0IgKWdKvqLISfilLcJOEbLzx717bhy3NJkV0G59zvchO7YWt82HwndB5hDEfr8w+VastR8/w7fZU7rykE22DfCrtu3ZgLH+8rAufbUzmrZ9tTyiFEA0jCZkQzVmlROwV6DbGkoi9C217uDS00zmFZOQW0b1iQuYfblTttn8CJXUvi3TuLstGVMgOLqfM04/NZV3Lr+NSbTpAVELDhy0rtr746SnwCoCLH4Hek4wbBZI3NDk0rTXPfreX8AAv7rqk5pvnHx7VjYn92vHCkn18uz21yc8phKiuzreOSqlEYJuWOrUQ7iUvA9a8ButnG4tX97kaLnnMoUlYek4hO49nUaY1WmvKyqBMa8q08Ue9TFs/12gNB07lAFROyMBYcHzPIvj9e+h1Za3P5+NpxstsIrsxFbKDy8mNHkpRtqd7VMgAek40hhyzT0JgpE2nxIb4smr/aaN/2+/fw4i/g3+YkdSavY0qWYchTQrrpz2nWJ+Uwf9d1YcA75q/V0opXrw2geOZ+Tz82Vai2/gwoEM9C8sLIRqkvleqd4BOSqlNGBP6VwNrtdbZDo9MCFFdXobRUX/d/4xErPckuPQxaNvToU+rtebO9zey+Whmg87z8TTROzq48sbOl0FgO2Nyfx0JGRjDlg2eQ3YmCTIOktHlJvj93Fw0l+txOax4xlhKaZBtC63HhPhyMquAsh+fxRQYDUPuNXb4BEGXkbDraxj9DJgaN9hRUlrGc9/voVOEP9cNbl/nsT6eZmbfMpBJb67hrvc3suC+C2kf6teo5xVCVFdnQqa1HqSU8gPOAy4AHsRYRukEsFprfZ8TYhRCuCgRs1q1P43NRzOZPrIbl3QLx6QUJqVQCuNjk+VfZVRTrB8H+3oS7FclITKZIfFG+PVl467BoHa1Pm+j1rM8uAKA42FDgTPuUyFr2wtC4oxhSxsTstgQP8aYNmBK2QgTZxmNZq16T4J930LyeuhwfqNC+nTjMQ6ezmX2LQPxNNef1IUFePPutMFc/eZqbpu7gS/uvYBgXzdJeIVo5up9pdJa5wErlVIbgHXAhcAUYKyDYxNCuDgRA6M6NvOn32kX7MO9wzrj5WGHqaf9b4JfXjImqV/yaK2HWdezbJCDyyEolpOeHXCrhEwp427L9bON5rg+QfWeEhvsyWMen5IX1AW/xJsq7+w+1hi23LWgUQlZTmEJryzdz+C4EEb1sm0IFaBLW6MdxpR313P//M28d+tgm5I5IUTd6vwtUkrdqJR6XSn1K7AIGAXsAC6SpZOEcKC8DFj2L6Oh6y8vQ9dRcO8a+MN7Tk3GAH49YFTH7hvexT7JGEBoJ4i72Bi2rONOwSBfz4YNWZaWwOGfofNwsguNRM5thizBSMhKi+DATzYd3v34AjqbUtnY9UEwV0ksvQONn4tdXzfqbsu3Vx0iLaeQJ8f3RDVwaakLuoTz76v78uuBNP6+cKe0wxDCDup7df0fcD4wF7hXa/241nqB1lpWnRXCESolYi9B15GWRGwuRPZyejhGdWw/0cE+/GFQrH0v3v8WY77XkdW1HtLgIcvjW6DgLHS+rLxdhttUyADanwd+4ba1vyjKpc36l9lY1p31nrVM3O89CXJOwLHfGhTGqawCZq86xOV9o+nfyMn5kwe1575hnfl4/TFmrzrUqGsIIc6p75WqDdAPY/7YU0qp7kAqsBZjcv9yx4YnRCuRlwG/vQm//ReKsqHXVXDpn12ShFW05mA6G4+c4V9X9sbbw2zfi/ecCN8FwZYPIP7iGg9p8JDlweWAgk7DyD52Ci+zCR9PO8fdFCazcYfkrq+hpBA8vGs/du2bqJyTvO3zEH5nC2o+pttY8PAxhi07XmBzGK/8tJ+SsjIeG9u0HnUzRnfnSHoez36/l45h/oztE9Wk6wnRmtVZIdNal2qtN2utX9da3wiMB5YAtwJLnRGgEC1aXgYs/z+jIrbqRegywqiITZ7n8mTMWh2LCvJhcj134DWKlx/0vRZ2LzSqWjVo8JDlweXQrj/4hZJdUOxe1TGrnhONpDvpl9qPyU2zrD06gcyw/pW79VfkHWAMW+5eCGWlNj39/pPZfLrhKDcN6UjHMP9GfAHnmEyK/0zuR5+YIJ7+ZhfFpbK8khCNVd8csgSl1D1KqfeVUgeADcBFwGtA05rfCNGa1ZmI9XZ1dACsPZTO+qQM7h3W2f7VMav+t0BJAez4osbdQT4eFBSX2baOYsFZo1Fq58sAyC4occ+ELP5S8PSve7Hxn18wFmIf8Q9iQ/yqLzBeUe9JkHMSjq616emfX7IXfy8PHhzRtYGB18zH08z0kd1IPVvAdzukaawQjVXfHLK5QC/ge+AyrXUHrfX1WuuZWmv7rmwrRGuQfwaWPwMz+1kSscvcLhGzmvnTfiKDvOvtT9Uk7fpD297GsGUNrBPys22pkh3+BXRphYSsmAB3TMg8fYy5gfu+q3kyfsYh2Piuse5nRDdiQnw5kVVQe1LadQx4+Nq0tuVvh9L5ac8p7h3emVB/ryZ+IecM796WThH+vP3LIZngL0Qj1TdkOUBr/aDW+mOt9VFnBSVEi5OfaSRirybAqheg83BLIva+2yViAGsPprPucAb3XNrZsXOwrAuOH98CJ3ZW292g9SwPLjeWFoodDFgqZN5udIdlRT0mGlWtlE3V9y3/PzB7wrAnAKNbv9ZworZ5ZN4B0G10vcOWZWWaf3+3h+hgH267MN4eX0U5k0lxx0Wd2JmSxW+HMux6bSFai/qGLGfXdwFbjhGi1Vv0gJGIdRoG96x220TMauay34kI9OaG8zo4/skSrgOzl9ECowprQmXTnZYHlxutNDyMyo/bDlmCMe/L5FH9bsuUzbDzSzj/Pgg0JsjHhvgC1D6PDIxhy9zTdd6xunhHKtuTz/LI6O4OSbKvHhBDmL8X7/wid1wK0Rj1vVpdpZSq5W0ZAAoYbsd4hGiZjq6DfjfCpLdcHUm91h1K57dDGfxtQi/n3KHoFwrdxxsLjo96utKdh0G+1iHLeipkGYfhzGEjkbEwJvW7aYXMt42RPO5dDCOfMiqFWsNP/wC/MLjwT+WHtg8xuvPXOY+s62jw9DOGLeMvqba7sKSUF3/YS8/oICb1j7HzF2Pw8TRz8/kdmblsPwdO5dClbYBDnkeIlqq+OWSPApvqeGwE/uLIAIVo9nLTIPeUW1fEKpq5bD/hAd7cNMQJ1TGrAbcY8+v2fVdp87khy3oqZIeM5ZKs88fAzStkAD0nQPoBSPvd+PzgMji8ylgkvkIX/6hgH0yqngqZlz90GwN7vjGa41bxwdojHMvI54lxPTCbGtYEtiFuGdoRLw8Tc3497LDnEKKlqm8O2TwbHp819EmVUtOVUruUUjuVUh8rpXyUUvFKqXVKqQNKqU+VUvabcSqEK53abfzr4jYWttiQlMGag+ncc2kn5/bv6jQcgmJhc+XJ/dYKV71DlgeXQ3AHCOsMGPOlcopKCHLnhKz7eOPfvYuNyf1Ln4I2Hautc+lpNhEV5ENyZh0VMqh12PJsXjGvLT/AxV3DuaRbhB2/gOrCA7y5ZkAMX21OJj2n0KHPJURL4/QFyJRSMRiLlA/SWvcBzMD1wPPAK1rrLsAZ4HZnxyaEQ5y0JGRt3T8hm/mTtTrW0blPbF1w/OByOLW3fLM1oapzyLK0BA6tMm6UsCwBlFtUgtZutmxSVUHtIGag0f5ix2dwcgeM+HuNzWLrbX0B0GWU0U6jyt2W7605zNn8Yh4f18O2uEqK4Me/wtGGdf+3uv2iThSWlPHBb0cadb4QrZWrVoT1AHyVUh6AH0b3/8sAazOiecBVrglNCDs7tRt8QyHA9gWcXWHTkQx+PZDG3Zd0wtfLBd3tB9xiDL399yL47lHIPom/lwcmVc+Q5fHNUHi22nAluNmySTXpcbkR/9K/Q3Q/6H11jYfFhviSUl9C5uVnLDi+Z1H5sGVuYQlz1yQxsmckvdsF2xbT0r/Dmtfgg0mQVPtNArXp0jaAy3q05YO1Rygotq1ZrRDCxoRMKeVTw7bwxjyh1joFeAk4ipGIncWYj5aptba+DU4Gapx5qpS6Sym1USm18fTp040JQQjnOrXHqI41cAFnZ3v1p/2E+Xtx0/lOnDtWUZsOcP966H+z0YdrZj9My56inXdB3UOWB5eDMlWazH4uIXPjChkY7S/AaIEx8mkw1fySHBPiS+rZ/Po74feeBHnp5asAfLz+KJl5xdw3vLNt8exeCOvegsSbITgW5v8Bjqyx9aspd8fF8aTnFrFgS0qDzxWitbK1QrZBKXW+9ROl1DVAw39LjXNDgCuBeKAd4A+MtfV8rfVsrfUgrfWgiAjHzocQzdOibce5b/4m27q7O5rWloSsp6sjqdPmo2f4ZX8ad13SCT8vF1aVgmNg4qvwwAbodQWsnskSHmBI8rtQmF3zOQeXQ7sBxt2aFtZGsm5fIYvoBlF9jbskO9d+w3psiC9ldfUis+oy0ujFtmsBhSWlvP3LIc7vFMoAWxYQzzgECx8whlEnvAJTvzGGVef/ocHDl0M7hdG7XRBv/3KIsjJpFCuELWxNyG4EXlNKvaiUmg/ciTHE2BgjgcNa69Na62LgK+BCoI1lCBMgFpC3VqLBjmXk8fiX2/luxwneX5vk6nDg7DFj3UI3n9A/86f9hPp7cctQJ88dq01oJ7h6Nty7hu2eCYw/PcdY3WDtG1BcISnJz4TkjZWGK6EZDVkC3LoEJte8UoFVrC2tLwA8fY3Fy/d8w9cbkziZVch9w7rUH0NxAXw+zag0Xvue0cstMMpIygIi4cNr4Nh6G78gUEpx58WdOHQ6lxX7Ttl8nhCtmU0JmdZ6B/AMcA9G37EHtNbJjXzOo8D5Sik/pZQCRgC7gRXAtZZjpgILG3l90UpprXniqx0oYFDHEGb+tJ/T2S6+06sZTOjfcvQMP/9+mjsvdnF1rCaRvZgZ/hRPhM00Kkk/PAmvDYBNc6G02Biaq7BcklVWeYXMzYcswei071ltVkglNjWHteo9CfIz2LBiIX1jgrm4qw2zS354ElK3waT/QkiFpDwoGqYthoC28MHVRvJro8sTookO9uFtaRQrhE1snUM2B3gISABuBRYrpe5vzBNqrddhTN7fDOywxDAb+DPwsGUR8zBgTmOuL1qvTzYc49cDaTwxvifPX5tAfnEpL/2wz7VBWVteuPGQ5cxl+wnx82SKu1THqgjy9WRLaSeYstAyjBYD3/wJXh8Ma14Hr0CIHVTpHGuFzK3bXjRAdLAvStlQIQPoPIJiD38G5f7MfcM6o+qbu7jzS9g4By74o1FdqyqoHUxdDP7hxkT/5BqWe6qBp9nEtAvi+O1QBjtTztp0jhCtma1DljuA4Vrrw1rrH4AhwIDGPqnW+h9a6x5a6z5a61u01oVa60Na6/O01l201n/QWksTG2Gz45n5PPPtHoZ2CuPG8zrQOSKAWy+M47NNx9iR7MI/Bqf2GP21fGy8w83Jth7LZOW+09xxcSf8vd0zeQny8TzX9iL+Erj9R7jhU+OOzGO/GdvMlSthzWZSv428PExEBvqQUl8vMkB7eLPKdB7jPTYypkdY3QenHYBFD0L7ITDiH7UfFxxjVMr8Qo2kLGWzTXFff14H/L3MUiUTwga2Dlm+qrXWFT4/q7WWPmHCLWiteXLBDkrLNM9fk4DJ0on8jyO6EubvxdPf7KLCj69zndrt1tWxWcv208bPk6kXxLk6lFoF+nhUbnuhlNHe4e5f4MbPYdxz1c7JLijGw6Tw8XRVZx/7iw3xtWnIcuXvp/koZwBB5GBKWlX7gcX58PlUYx3Ra9+rltRWExxrVMp8g+GDq+D41npjCfb15LrBHVi8PZXjNiSTQrRmtg5ZHlZKHar6cHRwQtjiy80prNx3msfGdqdDmF/59iAfTx4d052NR86waNtx5wdWWmwsi+OmE/q3J2eyfO8p7ry4EwFuWh0DY8gyp7Ck+t16JhN0G220y6giu6CEAB+P+ofrmhEjIas/qXlrxUEOBJyH9g6s1iS2ku8fg5M74eq3jQqYLdq0N5Iy72B4/0pj3lk9br0wDoC5a5Jsew4hWilb3z4OAgZbHhcDs4APHRWUELY6mVXAP7/ZxaCOIUwdGldt/x8GtqdvTDDPfreXvKJ6Fqi2t/SDUFrkthP6Zy3bT7Cv+84dswry8UBryC60/f/PWFjcfZPMxjB6kRVQUkcvsg1JGaxPymDapd1RPSYYyzKVFFU/cNsnsPl9uPgR6DqyYYGEdIRp34B3oJGUndhR5+HtQ/0Y1yeKj9cdLW9HIoSoztYhy/QKjxSt9avA5Y4NTYi6aa35y4KdFJaU8cK154YqKzKZFE9d0YsTWQW8tfKgcwM85b53WO5MOctPe05xx0Xxbj/PKsgSX0P+mGcXlBDo7d5fV0PFhvhRWqY5Wcedw2+uOECovxfXD+4Ava6Cgkw4/HPlg07thcXToeNFMOzJxgUTEmfcYOHpB/OugBM76zz8zos7kV1YwqcbjjXu+YRoBWwdshxQ4TFIKXUPxvJHQrjMom3H+WnPSR4Z3Y1OEQG1HjewYyhXJbbjf6sOcSzDhrYB9nJqj9HXKbyb857TRjOX7SfIx4OpluEkdxbka7zUZOU3pEJW0uIqZOWtL2r5Gd59PIsV+05z24VxxtJXnYcbQ4sVhy2Lco15Y17+cM07YG7C9yg03kjKPHzg/SvOtXipQb/2bTgvLpT3VifVWeETojWzdcjyPxUezwIDgcmOCkqI+pzOLuSpRbvo174Nt1/Uqd7j/zyuB2aleObbPU6IzuLUbgjtXG+PKWfbmXKWpbtPcvtFncqrT+7MGmOd61lWkVVQ7PaVv4aKaWPtRVbzPLK3fj5IgLcHt1iH7j28jbUy91iGLbWGbx+B0/uMZCwouulBhXU27r40e8GnN1Vu2lvFHRfHk5KZz/c7TzT9eYVogWwdshxe4TFKa32n1trFDZ5Ea/bUol3kFpby0rUJmGsYqqwqOtiX+4d3ZsmuE6w5kOaECDESMjec0D9r2X4CfTyY1gyqY3CudUV56wsb5BSWtJgeZFbt6kjIktJy+Xb7cW46vwPBvhUS0d6TjIXXD62ALR/Cto9h2OPQaZj9AgvrDFe9aSy9tGZWrYeN7BlJfLg/7/xyyHV3PQvhxupMyJRSD9f1cFaQQlT0/Y5Uvt2Ryp9GdqVrZKDN591xcSfah/ry9De7HT9sUpQLGYfdbv7Y7uNZ/Lj7JLddGF/5D7cbOzdk2cA5ZC0sIfPxNNM20JuUzOpDlv9bdRAPs4nbL4qvvKPTMKMH3q+vwHczjM8vedT+wXW+DHpfDateMhKzGphMitsuimdb8lk2JJ2xfwxCNHP1VcgC63kI4VQZuUX8beFO+sQEcdcl9Q9VVuTjaeYv43ux72Q2H60/6qAILU7vA7TbJWSzlu0n0NuD2y6Mr/9gNxHYwCFLrTU5hSUtbsgSam59cTKrgC83pTB5UCxtA6sMj3t4QY+JcHStkZhd/TaYzI4Jbsy/jaHL7x41hkdrcO2AWEL8PKVRrBA1qPMtpNb6aWcFIoQtnv5mF5l5xXxw+xA8zQ1v+jmmdyQXdA7jPz/+zsSEdoT4ezkgSowJ/eBWCdme1CyW7DrBg5d1Idiv+SQr1kqXrUOWeUWllJbpFlchA4gJ8WPbscxK29755RClWnP3JZ1rPqn/TbD7a7j2XWNNSkcJiobhT8IPT8Ceb6DXFdUO8fUyc/P5HXl9xQEOp+USH+7vuHiEaGbqG7L8scLHTzg+HCFqt3T3SRZuPc79w7vQMzqoUddQSvGPib3JKSzhlZ9+t3OEFZzabdx9Fuo+lajXlluqY1WHtdycp9mEn5fZ5iHLlrZsUkWxIb4cz8yn1NIk90xuEfPXHWViQjTtQ/1qPqnjBfD4MYi7yPEBnncXRPaFJY9DYU6Nh9wytCOeJhNzfpUqmRAV1VdiiKjw8R8cGYgQdTmbV8xfFuygR1Qg9w/v0qRrdY8K5OYhHfjwtyPsPZFlpwirOLUbIro7bniogfadyOa7HSeYdmEcbfwcVBV0oGrLJ9XB2q+sJVbIYkN8KSnTnMo27mactzaJvKJS7h1Wz++EyUlLSJk9YMLLkJUCP1df0gqgbaAPVya244tNyc5v1iyEG6vvt1RuhRFu4V/f7iY9t4gXr+2Hl0fT/7hMH9WNIF9Pnl602zF3fJ3c7VbDlbOW7yfA26P6pO9motIC4/XIKq+QtcSEzKiCJZ/JJ7ewhLlrkhjZM5LuUW40pbf9eTBgCqx9s9beZJP6x1BQXMYv+510x7MQzUB9f9k6KaUWKaW+qfBx+cMZAQqxct8pvtiUzN2XdKJvbLBdrtnGz4tHRnVj7aF0lti7L1JeBuSccJuEbP/JbL7bkcrUCzo2y+oYGOtZNrxC1vKGLM/1Isvj4/VHycwr5r7htcwdc6WRTxs3EXz7MJRVv6N5cHwoQT4e/LjrpAuCE8I91fcW8soKH7/kyECEqM3MZfuJD/fnwRFd7XrdG87rwPx1R3nmuz0M79EWH087DS+62YT+WcsP4Odp5g4bGui6q0AfD9JzaliTsQbWSlpL60MG57r1Hz6dy6cbj3F+p1AGdAhxcVQ18AuFUf+ERQ8Yvc/631Rpt6fZxGU92rJ870lKSsvwaMQNOkK0NHX+Fmitf67r4awgRet28FQOF3YJs1/CZOFhNvH3ib1IPpPP26vsOMG4fA3Lnva7ZiMdOJXN4u3HmXJBnOPuKHUCY8hSJvX7eJoJD/Dm/d+OcDKrsMnzKR0q8SZoPwSW/s2oGlcxuncUZ/KK2XREepIJAbYvnSSES2TmFZFVUELHUMfcHn9B53DG9YnizZUHOZVV+7IvDXJqtzFcE9TOPtdrglnLDuDraebOi5tvdQyM5rBZNs4hsyZuAS2wQgZGlSwzr5i+McFc1CXc1eHUzmSCy1+G/ExYVr2D0iXdIvAym/hxtwxbCgGSkAk3d9SykHKHsFpu6beDGWO6k19cyqJtx+1zQeuEflX/kk6OdOBUDt9sP84tQzsS2oyrY2BUu7Lyi226ASO7oASTAn8v97jD1d5iLMOW9w3rjHLxz1i9ovrA+ffCpnlwbEOlXQHeHlzYJYylu0/KUkpCYGNCppSq1vKipm1C2NuRdCMh6+jAhKxzRAA9o4PsM7lfa2MOmRvMH3t9+X58PMzc1cyrY2AMWZaUaQqK61/yKrugmABvD/dPVhppRI+2jOjRljG9o1wdim2GPQ6B0cYE/9LKVc5RvaI4mpHH7ydr7lkmRGtia4Wspqaw0ihWOJy1QtY+xHEJGcC4PlFsPHKGk00dtsw6bizm7OL5Y4dO57Bo23GmDO1IWIC3S2Oxh/L1LG2YR2asY9ny5o9ZXT0gljnTBmMyNZOE0zsQxj4LJ7bDhncq7RrZ01g54Mdddr7TWYhmqL5O/eOUUq8BMUqpWRUecwHp6Ccc7kh6LuEB3vh7O3Y+0Lg+RrXhh6b+YSif0O/aCtnryw/g7WHmzgau9+muyteztKFbf1YLXFi82et1JXQeAcv/D7LP/Y61DfKhf4c2LN0j88iEqK9CdhzYCBQAmyo8FgFjHBuaEEaFzJHDlVZdIwPpHOHP9zvslZC5rkJ2OC2Xr7emcPP5HQhvAdUxONfCwpaJ/TmFxQS14ApZs6QUjH8RSovgh79U2jWqVyTbk8+Seja/lpOFaB3qa3uxTWs9D+iitZ5X4fGV1lruVRYOdzQ9jw61rdFnZ+P7RrPucDrpOYWNv8jJ3cZ8Gb9Q+wXWQK8vP4CXh4m7altsuhkK8rVUyGwespQKmdsJ6wwXPww7v4BDK8s3j+4VCcBPcrelaOVsnUMWp5T6Qim1Wyl1yPpwaGSi1SssKSU1q8BpCdnYPlGUaZp2G/4p1y6ZdCTdqI7dNKQjEYEtozoGFSpkNgxZSkLmxi58CELi4dtHoMR449M5IoBO4f7S/kK0erYmZO8Bb2HMGxsOvA986KighABjvT6tHXuHZUW9ooPoEOrH942927KsFE7vc+lw5evLD+BhUtx9acuYO2ZlHYK0ZT3L7ILiFj2pv1nz9IHLX4L0A7DqRSgpRCnFqF6R/HYo3eblsYRoiWx9G+mrtV6mlFJa6yPAU0qpTcDfHRibaOWOOqHlRUVKKcb1jWLOL4c5m1dMsF8D/6hnHILSQpdVyI6m5/HVlhSmDO1I20Afl8TgKLYOWWqtpULm7rqMhF5XGQnZLy9DeFfu9u+MJ37sXZHGeUMugjZxRmNZIVoRW1+1CpVSJmC/UuoBIAUIcFxYQhjDbwDtnTRkCTCuTzT/+/kQP+05yTUDYxt2snVCf6RrErLXV+zHbFLcc2nLmTtm5e1hwtOsyMqvu0JWUFxGSZmWCpm7m/Q/6HWFMefy1B5CTu1ihmcSrPsc1gGefhDRw/hdamt5RPUFfzdemUCIJrI1IfsT4Ac8CPwLY9hyqqOCEgLgaEY+fl5mIpx4p2C/2GDaBfvw/c7UhidkJ3cDCsK7OyS2uhzLyOOrzSncfH5HIoNaVnUMjOqlLetZWvdLhczNefpAn2uMB6CAv336Gwd2b+KDCQF4pO+Fk7vg9x9hi2V2jDLB6Gdg6H2ui1sIB7LpVUtrvQFAKVWmtb61qU+qlGoDvAP0ATRwG7AP+BSIA5KAyXInZ+t2NCOXDqF+Tu24rpRiTJ8o5q87Sk5hCQEN6X92ajeEdgIv51X0rN5YcQCTapnVMasgX896215klS8sLglZc3Np33g+2JLOmuDzuGRwhff7uWnG79a6/8EPT0DOSRj5lMuXJhPC3mxdOmmoUmo3sNfyeT+l1JtNeN6ZwBKtdQ+gH7AHeBxYprXuCiyzfC5asSPpeU4drrQa3zeaopIylu891bATT+1xyYT+Yxl5fLEpmRvOa09UcMurjlkF+njUe5eltUImfcian4u6huPraWZp1bst/cMh/hKY/D4Muh1Wvwpf3welcgOAaFlsnTX5KkYj2HQw+pMBlzTmCZVSwZZz51iuVaS1zgSuBOZZDpsHXNWY64uWoaxMG01hXZCQDewQQkSgN9/vSLX9pOJ8yDjokgn9b648aFTHhrXc6hhg45ClVMiaKx9PM5d0C699sXGTGS7/Dwx7ErZ9BJ/cBEV5zg9UCAex+TYWrfWxKptKG/mc8cBp4D2l1Bal1DtKKX8gUmtt/Qt4Aois6WSl1F1KqY1KqY2nT59uZAjC3Z3OKaSwpMxpd1hWZDIpxvSOZOW+0+QX2fhjnvY76DKnT+hPyczni03HuG5we6KDfZ363M4W6ONR75ClNSELkISsWRrVK4oTWQXsSDlb8wFKwbA/w4RX4MBSeP8KyMtwbpBCOIitCdkxpdQFgFZKeSqlZmAMMzaGBzAAeEtr3R/IpcrwpDbeHtXwFgm01rO11oO01oMiIiIaGYJwd0csLS86hPm75PnH9Ykmv7iUn3+3cdjypGvWsHxzxQEA7m3h1TEwKmS2DlnKXZbN04gebTEpqg9bVjXoNmMIM3U7vDsGMqvWC4RofmxNyO4B7gdiMFpeJFo+b4xkIFlrvc7y+RcYCdpJpVQ0gOXfBk7gES2JteWFs7r0VzUkPpQQP0/bm8Se2g1mLwh1XmJ0PDOfzzYeY/Kg9rRr07KrYwBBvh71NoaVIcvmLcTfi8Fxofy4y4au/T0nwi0LIPskzBltzOEUohmzKSHTWqdprW/SWkdqrdtqrW/WWqc35gm11icwKm7W3gAjgN0YC5Zbb62ZCixszPVFy3AsIw+TghgXJRoeZhOje0WxbM8pCktsGLY8tcdod2F2XiLw1sqDANw3vIvTntOVAn08yS8upaikrNZjsguKUQoCvCQha65G9Ypk38ns8sbQdYq7EG79zpgu8O4YOPqb4wMUwkHqTMiUUq8ppWbV9mjC8/4RmK+U2o5Rbfs38BwwSim1Hxhp+Vy0Ukcy8mjXxhcvD9d16x7bN4qcwhJ+3Z9W/8Gndjv1DsvUs/l8uuEY1w5s77Kk1dms61nWNbE/u7CEAC8PTCZpidBcje4VBcCPu22sTkf1gdt/BP8IeP9K2Pe9A6MTwnHq+2u3EdhkeVxR4WPro1G01lst88AStNZXaa3PaK3TtdYjtNZdtdYjtdYyU7MVO5Ke57LhSqsLO4cT6ONR/7BlfiZkpTh1Qv9bKw9SpjX3tYK5Y1bW5ZPqGraUZZOavw5hfvSICmzYYuMhHeG2H4w5nJ/cBJs/cFyAQjhIna9cWmtrGwqUUg9V/FwIRzqakceY3jXeaOs0Xh4mRvWMZOnukxSXluFpruX9i3XuipMm9J84W8An649x7cBYl/RpcxXrRP261rOUhcVbhlG9InljxQEycosI9fey7ST/cJj6DXw2BRY9YDSQvfgRaSArmo2GjAfVeNejaFkWbEnmgY8219wHyEmyC4rJyC2iQ6hr7rCsaGyfKM7mF7P2YB1TJk859w7L//5sVMfubyVzx6zODVlKhaylG90rijINy/Y0oEoG4B0AN3wCfSfD8n/B+tmOCVAIB3DdBB3hlpbsPMHi7alsT66lD5ATHM0wJvO6ogdZVZd0i8DPy1z3sOWp3eAVCMENXPuyEU5mFfDR+qNcM6B1Vcfg3JBlXa0vJCFrGfrEBBEd7FN/+4uaeHgZi5fHXwKrXoLiAvsHKIQD1DepP1splaWUygISrB9btzspRuFESWlGMvTl5mSXxWC9u8rVc8jA6B5+WY+2LN19gtKyWqqG1iWTnDA08t+fD1Ja1vqqY3CulYUMWbZ8SilG9oxk1f4GNGeuyGSCSx6D3FOw9UP7ByiEA9SZkGmtA7XWQZaHR4WPA7XWQc4KUjhHWZkmydL/a9G247a1e3AAa4WsgxtUyMBoEpuWU8SGpBruM9HaqJA5YUL/qawCPlp3lKv7x7jN98aZZFJ/6zK6dyQFxWX8esCGu5xrEncRxA6G1TOhtO7+dUK4AxmyFOVOZBVQWFLG6F6RZOYVs6Khi2vbyZGMPEL8PN1mgehh3SPw9jDVvLZl9gnIP+OU+WP/W3WIkjLNA5e1vuoYGL3FlLJlyNI9fm5E0wyJDyPQ24Oltra/qEopY1J/5lHY+aV9gxPCASQhE+WS0ozq2M3ndyQi0JsvNqW4JI6j6XkuWzKpJv7eHlzaLYIlu05QVnXY0kkT+k9nFzJ/3RGuSoyhoxt9b5zJZFIEeNe+nmVBcSlFpWVSIWshvDxMDOvRlmV7TtU+XaA+XccYv5u/vgJltTcUFsIdSEImyh22DFd2bhvApP4xrNx3irScQqfHcSQj1y3mj1U0vm80J7MK2XIss/KO8oTMsU1hZ686SFFJWautjlkF+XjWOofMOpQZJAlZizG6VyTpuUVsPnqmcRcwmeCih+H0HvhdGsYK92ZTQqaUet6WbaJ5O5Keh7eHieggH64ZEEtJmWbh1uNOjaG4tIzjmQV0dLOE7LKebfE0q+rDlqf2gH9boweSg5zOLuSD34zqWHx466yOWQX5epKVX3OFzNrBP0ASshZjWPcIPM2qcXdbWvWeBCFx8Mt/jDmfQrgpWytko2rYNs6egQjXO5yWS8cwP0wmRfeoQPrEBPHlJufebXk8M5/SMu12k9aDfDy5qEs43+88UblHmxMm9L/9yyGpjlkE+njUWyEL9JY5ZC1FoI8nQzuH8+OuE43vjWj2gAv/BCmb4PAq+wYohB3V1/biXqXUDqC7Ump7hcdhYLtzQhTOkpSWS1yF+UnXDIhld2oWe1Kd1+HkiBu1vKhqXJ9oUjLz2Zli+X6UlcKpvQ6dP5aWU8gHa49wRb92dIoIcNjzNBdBPp613mVZnpBJhaxFGdUrkqT0PA6cymn8RfrdCAGR8OvL9guslTp4ugn/D6JO9VXIPgImAoss/1ofA7XWNzs4NuFEZWWaIxl5lYbErkyMwdOsnFolc6emsFWN6hWJ2aT4fqdl2PJMEpTkOzQhe/uXQxSWlPLAZV0d9hzNSZCvR613WVqHLOUuy5ZlVE9jCbUGrW1ZlacPDH0ADq00KmWiUQ6ezmHEf37mo3VHXR1Ki1RfH7KzWuskrfUNQDJQjLGEUoBSqoMzAhTOcfxsPkUlZcRVSMhC/b0Y3r0tX289Tkmpc+5QOpqRh5eHichAH6c8X0OE+HsxtFPYuWFLB99hmZFbxAdrjzCxXzu6tJXqGNg2qV8qZC1LVLAP/WKDm5aQAQy6FXzawC9SJWuseWuS8DKbGNXLtesMt1S2Tup/ADgJLAW+tTwWOzAu4WTWDv1VK1PXDIwlLaeQVftPOyWOI+nGHZYmk3suCDy2TxSH03LZdzK7wqLiPRzyXG//coj84lL+KHPHygX5eJBTWFK9/QiQXWi9y1IqZC3NqF6RbDuW2bThMu9AOO8u2LvYmGogGuRsXjGfb0zmisR2RAR6uzqcFsnWSf0PAd211r211n0tjwQHxiWczNryoupdfMO7tyXEz5MvndST7Eh6nlvOH7Ma0zsKpeD7HSeMCllIHHjZ/87HM7lFvL8miQkJ7ejSNtDu12+uAn080RpyiqrPI5O7LFuuKxNjCPTx4Oo317B8bxMqZUPuAU8/WP2q3WJrLT7deJT84lJuvTDO1aG0WLYmZMcA1602LRzuSFouPp7Vhwq9PExcmRjD0t0nOZtXe4d0e9BacyzDvROyiEBvBseFsmTnCTi522HDle/8eoi84lIelOpYJUG+lvUsa5hHll1Qgr+XGbObVldF47UP9WPxHy+iXRtfbpu7kZd+2Ne4ZrH+YTBwGmz/DM4csXucLVVJaRnz1hxhSHwovdsFuzqcFsvWhOwQsFIp9YRS6mHrw5GBCedKSjfusKxpqPCaAbEUlZbxzXbH9iRLzy0it6jULSf0VzSuTxSHT2ag0w84JCHLzCti3pojjO8bTddIqY5VZB2OrOlOS1lYvGXrGObPgvsuYPKgWF5fcYBb5qxrXOPqoQ+AMsGa15oW0PbP4fNboTi/addpBn7cfZKUzHxuuyje1aG0aLYmZEcx5o95AYEVHqKFOFyl5UVFfWKC6BYZwJebHXu3pTu3vKhobJ8oOqvjKF3qkA79c349TE5hCQ/KnZXVWBOu2ipkMqG/ZfPxNPPCtf144ZoENh05w+WzfmFjUkbDLhIcA/2uhy0fQE4j1uvVGlY+D1/dAbu+glUvNfwazcx7qw/TPtSXkT1lMr8j2ZSQaa2f1lo/Dbxo/djyuWgBSss0xzLyK91hWZFSimsGxLLlaBMn1dbjmBu3vKgoOtiXyR2yAUgPsO+QYmZeEe+tTmJ83yi6R8l7nqrKhyxrrJBJQtZaTB7cnq/uuwAfTzPXz/6Nd3451LDGsRdNh9Ii+O3Nhj1xSREsvB9W/tvobdbnWlg9E07va9h1mpHtyZlsSDrDtAviZTqAg9l6l+VQpdRuYK/l835KqQb+JAt3dTwzn6LSMuLDa0+EJvWPwaTgKwdWyY6k56EUxIa4d0IGMCkmiyJtZtYW+7YDeddaHRsh1bGanBuyrKlCJkOWrUnvdsEseuAiLuvRlv/7dg/3zd9c489FjcI6Q68rYcMcyM+07ZyCs/DRH2DrfBj2BFz1Jox9Drz8YPHDLXZZpvdWJxHg7cHkQbGuDqXFs3XI8lVgDJAOoLXeBlzioJiEkx1OM+6w7FjLkCVA2yAfLu4awYLNKTW2HLCHIxm5RAX54ONpdsj17alN9n7O+Hbkw40nOGSnquHZvGLeW53EuD5R9IgKsss1WxprBUyGLAVAsK8n/7tlIE+O78GPu09yxeur2XvCxpVFLnoYCrNgwzv1H3s2Gd4dC0m/wlVvwbDHQSkIiICRT8ORX2HbJ037YtzQyawCFm8/zrUDY+XNjhPYmpChtT5WZVOpnWMRLnKklpYXVV0zMJbjZwtYeyjdIXEcTc+jvZvPHwMgKxVObCc4LhEfDxMv/mCf4Yp3Vx8mW6pjdSqfQ1bDkGVWQYn80WiFlFLcdUlnPrpjCDmFJVz1xmrbVheJToAuo+C3t6Aor/bjUrfB2yOMpOzmLyHxxsr7B0yF2MHw418gr4Hz2dzch78doaRMM+2COFeH0irY3PZCKXUBoJVSnkqpGcAeB8YlnOhwWh5+Xmba1tPsb3SvSAJ9PBy2lNLRjDw6umtClnXceOF+dyy83BOyU/HpOZY7L+nE9ztPsPnomSZd/mx+Me+uPsyY3pH0jJbqWG28PEz4epprHbIMkgpZqzWkUxjfPngRie3b8Mjn23jiqx3sPZHF4bRcjmfmk55TSE5hCcWlZefmm138MOSlGRP8a7J/Kbw3HkwecNsP0GlY9WNMJpjwijH0+dNTDvrqnK+guJT5644yokdkrfOLhX3Z+up1DzATiAFSgB+B+xwVlHCupPRcOob5o1TdEzZ9PM1MSIjm6y3H+edVJQR42++PX35RKaeyC91rQv/ZZNi9CHZ/DcfWGdva9jLmj/S6Etr24M7CEj787SjPfbeXT+8+v97vYW3mrk4iu0CqY7YI9PEgK79yhayopIzCkjK7/kyK5qdtoA8f3j6E/yz9nbdWHuTj9TWvuWhSRnLv7WFmnupJ9JIXmPprZy7tFcPjY3sYv8cb34NvH4HI3nDjZxAUXfsTR/WF8++Fta9D4k3QYYiDvkLnWbT1OBm5Rdx2UZyrQ2k1bH316q61vqniBqXUhcBq+4cknC0pLZce0bbd0XfNgFg+Xn+M73ek8odB7e0Wg3VRcZcPWWYeg90LjSQseYOxLbIPDP+rkYRFdKt0uL+3B38a2ZW/fb2TZXtOMbIRa7xlFRQz59dDjOoVKU0XbRDkW309y3MLi0tC1tp5mE38eWwPLu8bzdGMPEuyXkphSRmFxRU+LimjsLiULRm3knjkMSZ5rOHZnwcS4e/JHUUfwq+vGEOaf5gL3jasJTvsCdi1ABZPh7t/BnPzHT7XWvPu6sP0iApkaKcwV4fTatj66vUaMMCGbaKZKSkt42hGHmP7RNl0/MCOIcSF+fHl5mSHJGR13VjgMCVFsOFt2PklpGwytkX1hcv+Br2ugvC6W1tcP7g97/16mOeX7GVY9wg8zDZPzQRg3uoksgpK+JNUx2wS5ONRrTHsuYXFm+8fQWFffWKC6RNjwxsc3Rv++wF3lSxiZ88RRC59AMxrYeCtMP4lMNv4Z9I7AMa9AJ/eZExvuPDBpn0BLrT2YDp7T2TzwjUJja76i4ar8ydNKTUUuACIqNKZPwhw/1vhRL1SMvMpKdO1NoWtSinF1QNieXnp7xzLsN8kfOuNBU6fQ6Y1fDcDNs+D6H4w4h9GJSyss82X8DSbeHRMd+6dv5kvNydz3eAONp+bXVDMO78eZmTPtrb98RAE+nhyJq+o0rZzCZlUyEQDKQUXT0d9cRszS+/FZD7CTHUT11z4DLG2JmNWPSdA9/Gw8lnoPQna2O9NqzO9u/owof5eXJHYztWhtCr1vZX3AgIwEreKHfqzgGsdG5pwBmvLi4ZM2pzUPwaABVvst+D40Yw8An08aOPn5ArHxjlGMnbxI3D3KmOSbwOSMauxfaLo36ENLy/9nfwi229Afn/tEc7mF/OnEd3qP1gAliHL/NqGLKVCJhqh11UQ2hlTdiqnRr/JO/pK7v5wMwXFjWgmMO5549/v/2zXEJ0lKS2XZXtPcfOQDs2iBVFLUmdCprX+2dKR//yKHfq11i9rrfc35YmVUmal1Bal1GLL5/FKqXVKqQNKqU+VUl5Nub6wjXW5org6msJW1T7Uj/M7hfLV5uSGdceuJ44OoX41l8cLzkJRrl2ep5Kk1caLZtcxxhyxJlBK8cS4npzMKuTd1YdtOiensIS3fznEZT3a0jdWqmO2qnHIslAqZKIJTGa45Su4ZzVtL7iJmdcnsjs1iye+2tHw17g2HYw+Zfu+hb3fOiZeB5q7JgkPk+Lm8zu6OpRWx9bJLnlKqReVUt8ppZZbH0187j9RuXXG88ArWusuwBng9iZeX9jgcFou/l5mIgLqbnlR1TUDYklKz2PTkaa1e7A6lpFX8x2Wafvh9cHw5lA4c8QuzwUYk/c/mwIh8XDN28at6010XnwoI3u25b8rD5KRW1Tv8fPWJJGZVyxzxxoo0MeY1F/xD6U1QQuSCplorJC48pt2LusRycMju7FgSwrvrk5q+LXOv8+4I/u7x6DQccvN2VtWQTGfbzzGxIR2tA3ycXU4rY6tf4XmYyybFA88DSQBGxr7pEqpWOBy4B3L5wq4DPjCcsg84KrGXl/YLik9l7jw+lteVDWubzS+nma7LDheWqY5diaPDqFVhk3TD8LcCVBWCgWZMPdyyLCt+lSnojz45EZjLbsbPgYf+1Wn/jy2B7lFJby+/ECdx+UWlvDOL4cY3j2Cfu3b2O35W4MgXw+KSzUFxeeWrZK7LIW93T+8C6N7RfLv7/aw5mBaw042exq9ybKS4efnHROgA3y24Ri5RaXcemG8q0NplWxNyMK01nOAYssw5m0YCVRjvQo8BlhfUcOATK21dRwiGaPnWTVKqbuUUhuVUhtPnz7dhBAEGPMFGtP0L8Dbg3F9oli8LbVx8ywqSD2bT3GprlwhK0/GimHqN8ajKNdo0phWd7JTJ61h0R/hxA645h0It291qmtkIJMHteeD35LKF0uvyftrj3Amr5g/jZS5Yw1V03qW1gpZgCRkwk5MJsXL1yUSH+7PAx9tIflMHd38a9LhfBgwBda+ASd3OSZIOyot08xdk8TguBCZQuEitiZk1le+VKXU5Uqp/kBoY55QKTUBOKW13tSY87XWs7XWg7TWgyIiIhpzCWFRXFrGsTP5xDWyGes1A2PJLizhx90nmxSHteVFB+sdlhmHYN5EKCkwErHIXsYdkNMWG1WtuePhdCOXK1ozC3Z+AZf9FbqNaVLctZk+qhtmk+KlH2uOMdcyd+zSbhEkSnWswcrXs6yUkBXj62nGs4EtR4SoS4C3B7NvGUhxSRn3fLip4W8+Rz4Nvm2M3mRlZfUe7ko/7TlJ8pl8bpPqmMvY+ur1f0qpYOARYAbGUONDjXzOC4ErlFJJwCcYlbaZQBullPXtbSzGigDCgZLP5FPagJYXVQ3tFEa7YJ8mL6V0NL1CQpZxGOZOhOI8mLrI6JJtFdkbplkmyb43vuHvOg/8ZCxt0usq465KB4kM8uH2i+JZuPU4O1POVtv/4W9HyMgt4k8jZe5YYwT5GhWysxW69cvC4sJROkUE8Or1iew6nsWTDZ3k7xcKo//PWOmjtuWZ3MS7vx4mpo0voxrR3FrYh00JmdZ6sdb6rNZ6p9Z6uNZ6INDw3gDGtZ7QWsdqreOA64HlllUAVnCulcZUYGFjri9sl5Rm26LitTGZFJMGxPDL/tOczCpodBxHMvLwMCnaccqojBXlwJRFRnPWqtr2gGnfgdnLGNJM3Wbbk6QfhC9uMybaXvWm0XvIge6+tDMhfp48+/2eSi/geUUlzF51iIu7hjOgQ4hDY2ipahuylIRMOMqInpFMH9mNr7akMHdNUsNO7ncDdLwIlv4dchs4F81JdqacZd3hDKZdENfgxtbCfprynX+4/kMa5M/Aw0qpAxhzyubY+fqiiqT0hvcgq+rqAbGUafi6CT3JjmbkMTA4G/P7E6EwC6YshOiE2k8I7wK3fgte/kYCl1LP6HdhtjGJX5nh+vnGeQ4W5OPJHy/ryuoD6azaf+5FeP5vR0nPLeIhqY41WlD5kOW5CllWQbH0IBMO9YBlkv//fbuHtQfTbT9RKZjwsjEH9se/OS7AJnhvdRJ+XmYmD26ejWxbiqYkZE0uMWitV2qtJ1g+PqS1Pk9r3UVr/QetdWFTry/qlpSWS6C3B2H+jW/51jkigP4d2vBlE3qS5Z06wmtFf4f8s0Yy1i6x/pNCO8Gt34FPG3j/Kji2vubjysrgq7uN9hl/mGvc2u4kN53fgfahvjz3/V7KyjT5RaX8b9VBLuoSzsCOjZqCKTg3ZFmxOaxUyISjmUyK/0zuR1yYH/d/tJmUzHzbT47obiyltO0j2PONw2LcnpzJvDVJbDqSYXOD6tPZhXyz7TjXDowl2Ffe1LhSUxIy+3QEFS5zOD2vUS0vqrpmQCy/n8xhZ0pWw08+m8I/M/9MkM6GKQugXX/bz23TAW79Hvwj4INJRqPXqn5+3mjQOOYZ6HRpw+NrAm8PMzNGd2dPahZfb01h/rojpOXI3LGmsiZeFZvDZhcUSw8y4XCBPp7MnjLImOT/QQMn+V/yKMQMMqZOHGxqG8/qsgqKuWPeRv6xaBfXvLWW3v9YwthXVzHj8228vzaJLUfP1Bjv/HVHKCotY9oFcXaPSTRMfWtZZlNz4qUAX4dEJJwmKS3XLj2wJia045+Ld/Pl5uSG3S6ddZzS9y4nWGfxw4D/cWXMwIY/eXCMUSmbNxHmXws3fHIu8drzDfz8HPS7EYbc0/Br28HEhHa888th/vPj7xSWlHFB5zAGx0l1rCl8Pc14mFSVuyxLCPCWCplwvM4RAbxyXSJ3vL+RvyzYyX8m97PtRE9fuPkL46alj2+EWxZAx6F2i+vlH3/ndE4h7906mJJSzY7kTLannGXF3lN8YbnxysOk6BoZSEJMMH1jg+nVLogPfzvCZT3a0ikiwG6xiMap8xVMax3orECEcxWVlJF8Jo8r7bB4bLCfJ6N6RbJwawpPju+Jl4cNhdesVGNSfu5pphX9mbvjhzQ+gMAo4+7L96+EjyYb88SCYmDBPRAz0GjQ6OBJ/LUxmRSPj+vBTe+sA+CNGxtQARQ1UkpVW89ShiyFM43sFcm9wzrz1sqD3De8M51tTWZ8Q4xE7L1xxmvV1EUNGxWoxfbkTN5fm8SU8zsyvHtbgPK7JbXWpJ4tYHvyWXakZLIjJYsfd5/g043Hys+XVhfuQV7BWqljZ/Io0zS65UVV1w6I5dvtqazYd4oxvaPqPjj7hFHRyjnJ2qGz2fwjNS+b1BABbWHqYvjgSvj4BmMY08sfrvsQPF27BMiFXcIZ1yeK4lLNkE5hLo2lpQissJ5lcWkZ+cWlMqlfONWUoR15a+VBluw8wf3Du9h+YkCEMVf23bHwwdVGhb9tz0bHUVqm+cuCnYQFePPImO7V9iulaNfGl3ZtfBnbx3ht1lqTfCafnSlnySks4cIu8rrkDuT+1lbK2vKiKXdYVnRx13AiAr3r70mWvNFYAinrONz0BduU8QJS3hS2KfzDjHYZkb0h5xRM/gCCml4BtIe3bh7IO1MHuTqMFiPIsp4lQE6BLCwunC862Jf+Hdrw/c7Uhp8cHANTFxrte96/0mjL00gf/naEHSln+fuEXjbPo1RK0T7Uj3F9o/nDoPZNnkcs7EMSslYqydKMtbE9yKryMJu4KrEdy/eeIj2nhhtk888Y3arfGWnc/n3zl9BxKEfT8wgP8MbPy05/TP1CjYn+f9wEHZowDCrcWpDvuQpZtiRkwkXG9YliZ0pWeXPrBgntZFTKSouNO8XPNrzB9smsAl78YR8Xdw1nQkJ0w2MQbkUSslYqKS2XIB8PQvzsN8xzzcBYSso0i7YdP7dRa9j+Obw+GDbNNSbX37++fDLrkYzcpg9XVuXpCyEd7XtN4VYCvc/NIcsutC4sLkOWwrnG9TGSoCW7GlElA6PR9S0LoCDTqJTlnGrQ6f9cvJui0jL+dWUfqXK1AJKQtVJJ6bnE26HlRUU9ooLo3S6ILzdb3umlHTBeZL66A4Jj4c4VMO458AkqP+doeh4d7TFcKVqVIF+P8iFLa4UsSCpkwsnah/rRJyaI73eeaPxF2iXCTZ8b0zg+mAR5GTadtnLfKb7dnsofh3ex29QT4VqSkLVSh9Ny6WinCf0VXTMglv0paaQtfhreGgrHt8D4l+COZdUavhaWlJKaVUAHe1fIRIsX5ONZw5ClVMiE843rE82Wo5mknm1Ao9iqOpwP138Eab8b7XsKs+s8vKC4lL8v3EWnCH/uurRT459XuBVJyFqhwpJSjmfmO+Rd1bUh+1ni/TjhG1+GnhPhgQ1w3p1gMlc7NvlMPlrbaUK/aFUCfTzJKyqluLSsfE1LmUMmXGGc5c7FJU2pkgF0Hm6sJnJ8q3GneHHtCd4bKw5wNCOP/7uqD94e1V9bRfMkCVkrdCzDaHkRH27HRCjnFHx5B0Gf/wF/TxN/NP+VkknvGD3CamGdCGv3OWSixQvyPdetXyb1C1fqFBFA98jApg1bWvW4HK6eDUm/wqe3QElRtUMOnMrhvz8f5Or+MVzQObzpzynchiRkrVBSmpEI2aUHWVkZbJgDrw2CXV/DJY+xdeJ3fJPbi18OpNV56hHL4uYdQmX+g2gY6+392QXFFSpkMmQpXGNc3yg2JGVwKrug6Rfrey1MfBUOLDXm35aeWyJMa81fFuzA19PMk5c3vneZcE+SkLVCSZZEqMktL07sgDmj4NuHIToB7l0Dl/2FS3t3oI2fZ709yY5m5OPnZSY8oPGLm4vWyVoNy8o3KmTeHibbVogQwgHG9YlGa/hx10n7XHDgNBjzb9i9EBb90XjjC3y1OYV1hzN4fFxPwgO87fNcwm1Ijb8VOpyWSxs/T9r4NTIRKsyBlc/Cb28ZS4FM+h8kXFe+PJG3h5kr+rXjkw3HOJtfTLBvzZWLoxm5dAj1k9u1RYMFWX6msgqKySookeqYcKlukQF0Cvdnyc4T3Hy+nVruDL3f8lr7b/DyJ3PYMzzz3R4GdGjD9YPb2+c5hFuRt5StUFJ6buOGK7WGPYvhjfNg7evQ/2Zj0n6/66utFXnNgFiKSsr4dnvt/XmOpOfJhH7RKFWHLKXlhXAlpRTj+kax9lA6Z3Krz/tqtEsfgwv+CBveZuvc6ZzNL+aZSX0xmeRNbEskCVkrlJSWR1xDJ9JnHjXu/Pn0JvBpA7f9CFfMMjrj1yAhNpgubQPO9SSroqxMczQjTyb0i0apOmQpE/qFq43rE01pmWbpbjsNW4LxRnfUvzjd/SaGnZ7PO51W0TM6qP7zRLMkCVkrU1BcyvGzDWh5UVoMv74KbwyBwz/DqH/B3T/XuyyRUoprBsSy6cgZDlvWzazodE4hhSVlUiETjVJxyDK7oJgASciEi/VuF0RsiG/j1rasQ3GZZsqJySwxXcrw5Ldg3f/sen3hPiQha2WOZuShtY0T+o/+Bv+7BH76B3QaZix5dOGDYLZtvs6k/jGYFHxVQ5XsiKXlRQcHNKcVLV+gtwdKQZal7UWgt8whE66llGJ832h+PZDGWcuyXvbw3urD7DmZi3nSm9BjAnz/GGz50G7XF+5DErJWJslSrapzDllehnFnz7tjoCDL6CB9w8fQpmETSaOCfbiwSzhfbU6hrExX2mdteSHLJonGMJkUAV4eZOUXy5ClcBtj+0RRXKpZvtc+w5bJZ/J4Zel+RvaMZFTfWLj2Xeh8mfH6vGuBXZ5DuA9JyFoZa8uLGocstYatH8Prg2DLfGMy6f3rjGaFjXTtwFhSMvP57XB6pe3HMvIwKYgJ8W30tUXrFuTrWT5kKXdZCneQGNuGqCAfvtthhyaxwFOLdhv/XtHL2ODhDdfNh/ZD4Ms74Pcf7PI8wj1IQtbKHE7LI9Tfq3oripO74b3x8PU9ENrJmCc2+v/AO6BJzze6VxQB3h58uSml0vYjGXm0a+OLp1l+BEXjBPp4cDavmNyiUqmQCbdgMinG9oli1e+nyS0sqf+EOvy46wQ/7TnJ9FFdiQ2pMJLg5Qc3fgqRfYxu/odXNTFq4S7kr2Erk5SWW/nOxsIc+PFv8L+L4fQemDjLuIMyqq9dns/Xy8zlfaP5fmdqpReoI+lyh6VomiAfT46fNTqjS0Im3MW4PlEUlpSxYt+pRl8jt7CEpxbtokdUILdeGF/9AJ9guGWB8eb5o+vh2IYmRCzchSRkrUxSei7xYf7G8OTuRUZPsTWzoN8N8MAmGDgVTPb9sbhmYCx5RaWVFt89mpEnSyaJJgny9eB4prEAc5AMWQo3MSgulPAAL75vwrDlzGX7OX62gGcm9al9FMEvFKZ8DYGRMP8aSN3e6OcT7kESslYkv6iU1LMF9PM/A/P/AJ/dYnTav+1HuPJ18A9zyPMOjguhQ6hfeU+y7IJiMnKLpOWFaJJAH8/yu9mkQibchdmkGNM7ihX7TlFQXNrg8/ekZjHn18PccF57Bnasuc9jucAomLIQvALhg0lw+vdGRi3cgSRkrcjRU+k8aP6KmzdPhqNrYcyzcFf9PcWaSinF1QNiWHsonZTMfI5mGC0vZMhSNEXF7vwyqV+4k3F9oskrKuXn30836LyyMs2TC3YQ7OvJn8f2sO2kNh2MpEyZ4P0r4UxSwwMWbkESstbiwDJiPxnFw55fkB03xljyaOh9YHZOZeGaAbFoDQs2J3PU2oNMKmSiCYIq3JgiFTLhToZ0CqWNnyff72hYk9hPNhxjy9FM/jK+Z8PWGg7vYgxfFufBG+fDJzcZd8znZTQscOFSkpC1dFnH4fNp8OHVFJeWcXPRE5gnvwdB7ZwaRvtQP86LD+XLzSkcybA2hZWETDReYKUKmSRkwn14mk2M7hXJsj2nKCyxbdgyLaeQ577fw/mdQrl6QEzDnzSyN9z+Iwy4BY5vMe6Yf7ELzJ0Av/0XMo81/JrCqSQha8lKi+GdUbDvexj+V17s9B57/Qa6bHjn2gGxHE7LZeHW44T4ecpEbNEkFX9+ZMhSuJtxfaLJLixhzYH0+g8G/v3tHvKLS/m/q/qiVCMXD4/oDuNfhOm74M4VcNF0yE2DJX+GV/sYK6/8/AKc3GXc2CXcitMTMqVUe6XUCqXUbqXULqXUnyzbQ5VSS5VS+y3/hjg7thbH7AkTXob7foNLH+VARjEdXbhU0bi+Ufh4mtiTmiVLJokmkyFL4c4u6BJGoLcH39kwbLnmYBpfbUnhnks706Vt03o/Asai5DEDYMTf4P7f4I+bYdQ/wcMHVvwb3roAZvWHH/5i9DGToU234IpXsRLgEa31ZqVUILBJKbUUmAYs01o/p5R6HHgc+LML4mtZuo0p/zApPZeLukS4LJRAH0/G9YlmwZYUWTJJNJk1CfMym/DxNLs4GiEq8/YwM7JXJEv3nKS4tKzW9hWFJaX89euddAj14/7hXRwTTFhnuPBPxiP7JPz+PexZDOtnw9rXjWP8wiC8G4R3hfDu5z5u0wFM8vvlDE5PyLTWqUCq5eNspdQeIAa4EhhmOWwesBJJyOwmr6iEk1mFxIe7NhG6ZkAsC7akyIR+0WTWIUupjgl3NbZPFAu2pLDuUAYXdQ2v8ZjZPx/i0Olc5t462DlvLAIjYeA041GQBcfWwel9kPY7pO2Hvd9B3vvnjjd7Q1gXS6LWzRgW7TAUghsxz03UyaWvZEqpOKA/sA6ItCRrACeAyFrOuQu4C6BDhw5OiLJlSEozJtLXuIalEw3tHMY9l3bmykTn3lQgWh7rkGWAJGTCTV3aLQI/LzPf7UytMSFLSsvltRUHuDwhmmHd2zo/QJ8g6DrKeFSUl2EkZ2m/Q9o+4+MT22HPItBlMGk29LvO+fG2cC57JVNKBQBfAg9prbMqTmLUWmulVI0zDrXWs4HZAIMGDZJZiTY6Yl1U3MVzt8wmxePjbOyvI0QdrJUxqZAJd+XjaWZ4j7b8uOsE/7qyD2ZTpb9z/G3hTrzMJv4+oZcLo6yBX6jRn7Jqj8qSQsg4BAE11ktEE7nkLkullCdGMjZfa/2VZfNJpVS0ZX800PiFwEQ1h60JmYsrZELYS3lC5i13WAr3Na5PFGk5RWxMqjxxfvH2VH7Zn8aM0d2IDPJxUXQN5OENbXsaCZuwO1fcZamAOcAerfXLFXYtAqZaPp4KLHR2bC1ZUlou4QHeBHhLNUG0DN4eZnw8TVIhE25tePe2eHuY+L7CWr5ZBcX8c/Fu+sYEc8vQONcFJ9yKKypkFwK3AJcppbZaHuOB54BRSqn9wEjL58JOktLyXD6hXwh7C/P3JizA29VhCFErf28PLu0WwZKdJygrM2bZ/OeHfaTnFPLvSX0rDWOK1s0Vd1n+CtT2EzjCmbG0JofTcxnWzXUtL4RwhLenDCIsoAFLzAjhAuP6RvHj7pNsTc7Ew6R4/7cjTB0aR9/YYFeHJtyI1PpbgZzCEk5nF8r8MdHi9GoX5OoQhKjXiJ6ReJoVi7elsj4pnYgAbx4e3c3VYQk3IwlZK5CUZkzoj5eETAghnC7Ix5OLuoQzb20SpWWa12/sL0vHiWpkLctW4Ei6pQeZLFckhBAuMa5PNKVlmku6RXB532hXhyPckFTIWoGk8pYXMqlfCCFcYXxCNFuOZXL/8M6NXzxctGiSkLUCh9NyaRvojZ+X/HcLIYQrBHh78OzVfV0dhnBjMmTZCiSl5cqEfiGEEMKNSULWCiSl5xIv88eEEEIItyUJWQuXXVBMWk6RVMiEEEIINyYJWQtnvcNSuvQLIYQQ7ksSshbucJosKi6EEEK4O0nIWjhrU9iOoZKQCSGEEO5KErIW7nB6LlFBPvh6mV0dihBCCCFqIQlZC2e0vJD5Y0IIIYQ7k06hLVx4gDedIgJcHYYQQggh6iAJWQs3e8ogV4cghBBCiHrIkKUQQgghhItJQiaEEEII4WKSkAkhhBBCuJgkZEIIIYQQLiYJmRBCCCGEi0lCJoQQQgjhYpKQCSGEEEK4mCRkQgghhBAuJgmZEEIIIYSLKa21q2NoNKVUNrDP1XE0QTiQ5uogbNScYq2qucbeXOO2aq7xN9e4oXnHDs03/uYaNzTf2Jtr3B211hE17WjuSyft01o327WBlFIbm0v8zSnWqppr7M01bqvmGn9zjRuad+zQfONvrnFD8429ucZdFxmyFEIIIYRwMUnIhBBCCCFcrLknZLNdHUATNaf4m1OsVTXX2Jtr3FbNNf7mGjc079ih+cbfXOOG5ht7c427Vs16Ur8QQgghREvQ3CtkQgghhBDNniRkQgghhBAu1iwSMqVUjqtjaAylVKlSamuFR1wdx65USrnkFl6llFZKfVjhcw+l1Gml1GJXxNNYSqmrLF9LD1fHUp8W9D1vlr+bVvXF78rfy9o0p5/zqpRSf1FK7VJKbbe8Jg5xdUy2UkrFKqUWKqX2K6UOKqVmKqW86jj+IaWUnzNjrCUOrZT6T4XPZyilnnJhSDap8Pdzl1Jqm1LqEaVUs8hZGqtFf3FuIF9rnVjhkeTqgGqRC/RRSvlaPh8FpDTkAkopd+hpdwPwq+VfmymlzI4Jp05N/p6LVqtRP+euppQaCkwABmitE4CRwDHXRmUbpZQCvgK+1lp3BboBAcAzdZz2EODyhAwoBK5WSoW7OpAGsv797I3x+jgO+IeLY3KoZpOQKaUClFLLlFKblVI7lFJXWrbHKaX2KKXetmTSP1b4I+d2lFIDlVI/K6U2KaV+UEpFV9h9i+UdwU6l1HlODu074HLLxzcAH1t3KKXOU0qtVUptUUqtUUp1t2yfppRapJRaDixzcryVKKUCgIuA24HrLduGKaVWKaW+VUrtU0r91/oOSymVo5T6j1JqGzDURWE35nu+SimVWOG4X5VS/ZwZdFWW7/PiCp+/rpSaZvk4SSn1dIXfW7er6tQVv7up4+e8tu//eKXUXsvrzSwXV2CjgTStdSGA1jpNa328ttdES3VypgtfEyu6DCjQWr9nib0UmA7cppTyV0q9ZIlxu1Lqj0qpB4F2wAql1AoXxg1QgnFH4vSqOyx/P5db4l6mlOqglApWSh2p8Frpr5Q6ppTydHbgVlrrU8BdwAPKYFZKvaiU2mCJ/e4KX9OfLa8125RSz7kq5sZoNgkZUABM0loPAIYD/7G8awHoCrxhyaQzgWtcE2I1vurccOUCyw/0a8C1WuuBwLtUfoflp7VOBO6z7HOmT4DrlVI+QAKwrsK+vcDFWuv+wN+Bf1fYNwDj67nUaZHW7Epgidb6dyBdKTXQsv084I9AL6AzcLVluz+wTmvdT2v9q9OjNTTmez4HmAaglOoG+Gittzkt4sZJs/zevgXMcHUwzVxtP+fVWH6u/geMs7ze1LhcixP9CLRXSv2ulHpTKXWpm78mVtQb2FRxg9Y6CzgK3AHEAYmWyt98rfUs4DgwXGs93Mmx1uQN4CalVHCV7a8B86xxA7O01meBrYD1NX0C8IPWuthZwdZEa30IMANtMd6QnNVaDwYGA3cqpeKVUuMwfkeGaK37AS+4LOBGcIdhJlsp4N9KqUuAMiAGiLTsO6y13mr5eBPGL4c7yLe8mACglOoD9AGWWnJJM5Ba4fiPAbTWq5RSQUqpNlrrTGcEqrXerow5bjdgVG4qCgbmKaW6Ahqo+E5pqdY6wxkx1uMGYKbl408sny8G1lt+kVFKfYxRXfgCKAW+dEGc5Rr5Pf8c+JtS6lHgNmCuc6Jtkq8s/27iXEIsGqe2n/Oa9AAOaa0PWz7/GKPK4BJa6xxLAnkxxpvqT4H/w01fExtgGPCm1roEwE1eDyvRWmcppd4HHgTyK+wayrnfyQ84l8B8ClwHrMCoxL7ppFBtNRpIUEpda/k8GKMwMxJ4T2udB+75f1GX5pSQ3YTxDm+g1rpYKZUE+Fj2FVY4rhRw1yFLBezSWtc2RFa1KZyzm8QtAl7CeIEJq7D9X8AKrfUkSwKxssK+XGcFVxulVCjGkEJfpZTGeFHXwLfU/j0tsAw7uFqDvuda6zyl1FKMd4GTgVorJE5UQuVqu0+V/dbfz1Lc8zWnvvjdQh0/5wtpBvFD+VDfSmClUmoHcD/u/ZpotRu4tuIGpVQQ0AFIckVAjfAqsBl4z4ZjF2EUQEIxXmOWOzAumyilOmG8hpzC+Fv6R631D1WOGeOK2OylOQ1ZBgOnLMnYcKCjqwNqhH1AhDImt6KU8lRK9a6w/zrL9oswyrFnnRzfu8DTWusdVbYHc27C+TSnRmSba4EPtNYdtdZxWuv2wGGMd+LnWUrZJozvr6uGJ2vTmO/5O8AsYIPW+oxjw7PJEaCXUspbKdUGGOHieBqqucRf28+5iZrj3wd0Uufu7r7O2QFXpJTqbqn4WiUCe3Dv10SrZYCfUmqKJR4z8B+MCvUPwN3KcmOTJYkByAYCnR9qzSzVos8whvus1mCZi4hR9PjFcmwOsAGjGrvY1W9elVIRwH+B17XRzf4H4F7rvDalVDellD+wFLhVWe5urfB/0Sy447vVSiw/5IUY49vfWN5VbcSYY9OsaK2LLCXWWZaxfA+Mdy27LIcUKKW2YAxP3eaC+JIx/tBX9QLG8NlfMapO7uYG4Pkq274E7sV4UXkd6IJRfl/g3NDq1pjvudZ6k1IqC9ve6TqM9XdTa31MKfUZsBMjQdjiyrhs1Qzjr+3n/HqMP7SV4tda5yul7gOWKKVyMX4XXCkAeM2SNJYABzCGUGfjpq+JVlprrZSaBLyplPobRhL8HfAkRtWmG7BdKVUMvI3xmjMb43t/3E3mkYGRRD5Q4fM/Au9ZpkCcBm6tsO9TjCkSw5wWXWW+SqmtGP/3JRhDqi9b9r2DMTVps2Uu+WngKq31EmXc9LRRKVXEuf+jZsHtl05Sxh1kb2utXXmHjWiGlFLDgBla6wkuDsWulFLtMIZ9emity1wYR7P+3Wzu8dtCKRVgmbulMCZ279dav+LquGyhlFqJ8fu70dWxCOEMbj1kqZS6B2NS519dHYsQ7sAyZLIO+IuLk7Fm/bvZ3ONvgDstVYZdGMPg/3NtOEKI2rh9hUwIIYQQoqVz6wqZEEIIIURrIAmZEEIIIYSLSUImhBBCCOFikpAJIYQQQriYJGRCCCGEEC4mCZkQQgghhItJQiaEEEII4WKSkAkhhBBCuJgkZEIIIYQQLiYJmRBCCCGEi0lCJoQQQgjhYpKQCSGEEEK4mCRkQgghhBAuJgmZEEIIIYSLSUImhBBCCOFikpAJIYQQQriYJGRCCCGEEC4mCZkQosVSSnkrpeYopY4opbKVUluVUuMq7B+hlNqrlMpTSq1QSnWssG+yUmqNZd/KGq49Wym1TylVppSa5pyvSAjRUklCJoRoyTyAY8ClQDDwV+AzpVScUioc+Ar4GxAKbAQ+rXBuBvAq8Fwt194G3AdsdkjkQohWxcPVAQghhKNorXOBpypsWqyUOgwMBMKAXVrrzwGUUk8BaUqpHlrrvVrrnyzb76jl2m9Y9hc47isQQrQWUiETQrQaSqlIoBuwC+iNUeUCypO3g5btQgjhVJKQCSFaBaWUJzAfmKe13gsEAGerHHYWCHR2bEIIIQmZEKLFU0qZgA+AIuABy+YcIKjKoUFAthNDE0IIQBIyIUQLp5RSwBwgErhGa11s2bUL6FfhOH+gs2W7EEI4lSRkQoiW7i2gJzBRa51fYfsCoI9S6hqllA/wd2C7ZTgTpZTZst0DMCmlfCzDnlj2e1n2K8DTsl9eU4UQjaK01q6OQQghHMLSVywJKARKKuy6W2s9Xyk1Engd6AisA6ZprZMs504D3qtyyXla62mW/Ssx2mlUNFxrvdKeX4MQonWQhEwIIYQQwsWkvC6EEEII4WKSkAkhhBBCuJgkZEIIIYQQLiYJmRBCCCGEizXrtSzDw8N1XFycq8MQQgghhKjXpk2b0rTWETXta9YJWVxcHBs3bnR1GEIIIYQQ9VJKHaltnwxZCiGEEEK4mCRkQgghhBAuJgmZEEIIIYSLNes5ZEIIIURrUFxcTHJyMgUFBa4ORdjAx8eH2NhYPD096z/YQhIyIYQQws0lJycTGBhIXFwcSilXhyPqoLUmPT2d5ORk4uPjbT5PhiyFEEIIN1dQUEBYWJgkY82AUoqwsLAGVzMlIRNCCCGaAUnGmo/G/F9JQiaEEEII4WKSkAkhWo2FW1N47vu9rg5DiGbJbDaTmJhY/khKSmLlypVMmDCh0nFz587lgQceqLRt2LBhbNy4kezsbDp37sz+/fsB42aFvn37sm7dOsCoLD3yyCPl57300ks89dRTADz11FPExMRUiuHTTz8t/zggIIDu3buTmJjIlClTKj3/1q1bGTp0KL179yYhIYFPP/20fN/hw4cZMmQIXbp04brrrqOoqAiAVatWMWDAADw8PPjiiy8qXW/s2LG0adOm2tfeFJKQCSFajfm/HeXdXw9TXFrm6lCEaHZ8fX3ZunVr+aMxSxcGBgby7LPPlidsL730EhdccAFDhgwBwNvbm6+++oq0tLQaz58+fXqlGK677rryjwcNGsT8+fPZunUr77//fqXz/Pz8eP/999m1axdLlizhoYceIjMzE4A///nPTJ8+nQMHDhASEsKcOXMA6NChA3PnzuXGG2+sFsejjz7KBx980OCvvy5yl6UQolUoLdPsPH6WotIyDp3OpXtUoKtDEqJRnv5mF7uPZ9n1mr3aBfGPib3tes3aTJ48mTlz5vDCCy/w3//+ly1btpTv8/Dw4K677uKVV17hmWeesdtzduvWrfzjdu3a0bZtW06fPk1wcDDLly/no48+AmDq1Kk89dRT3HvvveUJp8lUvXY1YsQIVq5cabf4QBIyIUQrcfB0DnlFpQDsPZElCZkQDZSfn09iYiIA8fHxLFiwoNHXmjlzJj179mT27NmEhoZW2nf//feTkJDAY489Vu28V155hQ8//BCAkJAQVqxY0eDnXr9+PUVFRXTu3Jn09HTatGmDh4eRDsXGxpKSktKIr6jpJCETQrQK245lln+8OzWLKxNjXBeMEE3grEpWVdYhy/rUdodhxe1LliwhOjqanTt3VjsuKCiIKVOmMGvWLHx9fSvtmz59OjNmzGhY4BWkpqZyyy23MG/evBorX67kXtEIIYSD7Eg5i7+XmR5RgexNzXZ1OEK0WGFhYZw5c6bStoyMDMLDwwE4fvw4s2bNYv369Xz33Xds37692jUeeugh5syZQ25urt3iysrK4vLLL+eZZ57h/PPPL481MzOTkpISwGjAGxPjmjdrkpAJIVqFbcln6RMTTK92QexJte/8GyHEOYMHD2b16tWcOHECgI0bN1JYWEj79u0Bo8r15JNPEhsby8svv8z999+P1rrSNUJDQ8vnmtlDUVERkyZNYsqUKVx77bXl25VSDB8+vPwuynnz5nHllVfa5TkbShIyIUSLV1RSxp7jWfRr34Ze0UGcyi4kPafQ1WEJ0SIsW7aM2NjY8sehQ4eYOXMm48ePJzExkYceeoiPP/4Yk8nE0qVLOXr0KLfffjsAEydOJCQkpNpdkQCPPPJItbstX3nllWqtN2zx2WefsWrVKubOnVt+rnX49fnnn+fll1+mS5cupKenl8e2YcMGYmNj+fzzz7n77rvp3fvcUPHFF1/MH/7wh/Kv/YcffmjEd64yVTUrbU4GDRqkN27c6OowhBBubmfKWSa89iuv3dCfED8vbp6zjvl3DOHCLuGuDk0Im+zZs4eePXu6OgzRADX9nymlNmmtB9V0vFTIhBAt3rbkTAD6xbahZ7Rxd6UMWwoh3IncZSmEaPF2JJ+ljZ8n7UN9UUoREejNHpnYL4RwI1IhE0K0eNuSz9I3Jrj8tvue0TKxXwjhXiQhE0K0aPlFpfx+Mpt+sW3Kt/WMCuTAqRxZQkkI4TYkIRNCtGi7U7MoLdP0jQ0u39YzOqh8CSUhhHAHkpAJIVq07RUm9Fv1jA4CjCWUhBDCHUhCJoRo0XYknyUi0JvIIO/ybZ0i/PEym9gt88iEsJlSiptvvrn885KSEiIiIpgwYUL5tq+//pqEhAR69uxJ3759+frrr8v3TZs2jfj4ePr160e3bt2YMmUKycnJ5fvj4uLK+44988wz9O7dm4SEBBITE1m3bl21eB599FF69OhBQkICkyZNIjMzs3zfs88+S5cuXejevXulHmG33XYbbdu2pU+fPpWu9fnnn9O7d29MJhOuaqflsIRMKfWuUuqUUmpnhW2fKqW2Wh5JSqmtlu1xSqn8Cvv+66i4hBCty7bkTPrFBldaR8/TbKJL2wBZQkmIBvD392fnzp3k5+cDsHTp0krLDG3bto0ZM2awcOFC9uzZw6JFi5gxY0alpZFefPFFtm3bxr59++jfvz+XXXYZRUVFlZ5n7dq1LF68mM2bN7N9+3Z++umn8i7/FY0aNYqdO3eyfft2unXrxrPPPgvA7t27+eSTT9i1axdLlizhvvvuo7S0FDCSwiVLllS7Vp8+ffjqq6+45JJLmv6NaiRHtr2YC7wOlLff1VpfZ/1YKfUf4GyF4w9qrRMdGI8QopXJLijmUFouV/SrvjZdj+hAft2fVsNZQri57x+HEzvse82ovjDuuXoPGz9+PN9++y3XXnstH3/8MTfccAO//PILAC+99BJPPvkk8fHxAMTHx/PEE0/w4osv8sEHH1S6jlKK6dOns2DBAr7//vtKyxWlpqYSHh6Ot7dR1baugVnV6NGjyz8+//zzy5c/WrhwIddffz3e3t7Ex8fTpUsX1q9fz9ChQ7nkkktq7O7vDk13HVYh01qvAjJq2qeMt6qTgY8d9fxCCLEzJQutIaF9cLV9soSSEA13/fXX88knn1BQUMD27dsZMmRI+b5du3YxcODASscPGjSIXbt21Xq9AQMGsHfv3krbRo8ezbFjx+jWrRv33XcfP//8c71xvfvuu4wbNw6AlJSUShW12NhYUlJSbPr6XMlVjWEvBk5qrfdX2BavlNoCZAF/1Vr/UtOJSqm7gLsAOnTo4PBAhRDNl3VCf0JM9YSsR5R1Yn82F3bxrrZfCLdlQyXLURISEkhKSuLjjz9m/PjxTb5eTcs3BgQEsGnTJn755RdWrFjBddddx3PPPce0adNqvMYzzzyDh4cHN910U5PjcSVXTeq/gcrVsVSgg9a6P/Aw8JFSKqimE7XWs7XWg7TWgyIiIpwQqhCiudqecpaYNr6EBVRPuGQJJSEa54orrmDGjBnccMMNlbb36tWLTZs2Vdq2adOmSotyV7Vly5YahwvNZjPDhg3j6aef5vXXX+fLL7+s8fy5c+eyePFi5s+fXz5PNCYmhmPHjpUfk5ycXGmum7tyekKmlPIArgY+tW7TWhdqrdMtH28CDgLdnB2bEKJl2Z6cSb8ahisBwgK8ZQklIRrhtttu4x//+Ad9+/attH3GjBk8++yz5XO0kpKS+Pe//80jjzxS7Rpaa2bNmkVqaipjx46ttG/fvn3s339uAG3r1q107Nix2jWWLFnCCy+8wKJFi/Dz8yvffsUVV/DJJ59QWFjI4cOH2b9/P+edd15TvmSncEWFbCSwV2tdfq+rUipCKWW2fNwJ6AocckFsQogW4kxuEccy8ukb06bWY2QJJSEaLjY2lgcffLDa9sTERJ5//nkmTpxIjx49mDhxIi+88AKJiYnlxzz66KPlbS82bNjAihUr8PLyqnSdnJwcpk6dSq9evUhISGD37t089dRT1Z7vgQceIDs7m1GjRpGYmMg999wDQO/evZk8eTK9evVi7NixvPHGG5jNZgBuuOEGhg4dyr59+4iNjWXOnDkALFiwgNjYWNauXcvll1/OmDFj7PTdsp2qafzWLhdW6mNgGBAOnAT+obWeo5SaC/ymtf5vhWOvAf4JFANllmO/qe85Bg0apF3VL0QI4d5+/v00U99dz0d3DOGCLjXfpfXsd3t4b3USu/45Bk+ztGUU7mvPnj1ucSegsF1N/2dKqU1a60E1He+wSf1a6xtq2T6thm1fAjUPEAshRCPssEzo7xNb85AlVF5CqXtUoJMiE0KI6uQtoRCiRdqWfJZO4f4E+XjWekwPy8R+WUJJCOFqkpAJIVqk7cmZJNRRHQPoHBGAp1nJEkqiWXDUFCNhf435v5KETAjR4pzMKuBkViF9KywoXhNjCaVAWUJJuD0fHx/S09MlKWsGtNakp6fj4+PToPNc1RhWCCEcZnuysSpbv3oqZGD0I5MllIS7i42NJTk5mdOnT7s6FGEDHx8fYmNjG3SOJGRCiBZnR3ImJgW92tXYX7qSXtFBfLU5hfScwhobyArhDjw9PcvXiBQtkwxZCiFanG3JZ+kWGYifV/3vOSsuoSSEEK4iCZkQokXRWts0od9KllASQrgDSciEEC1K8pl8zuQV1zuh30qWUBJCuANJyIQQLUpDJvRbyRJKQghXk4RMCNGibE/JxNOsGtR5v2dUIAdO5VBcWubAyIQQonaSkAkhWpTtx87SMzoIbw+zzedUXEJJCCFcQRIyIUSLUVam2Zlylr4xtg9XgiyhJIT4//buOzyqMnvg+PdMOqmEJKTRQm8JzYJSRERFVMDu2ruu5WdZd+2ru7prWXtZRbGvXRREFLAiYKEEQugdEpIQSnqfeX9/3AmEkDIpk0k5n+eZJ5M7d+49aZMz73vueT1PEzKlVLuxfX8h+aUVJLlY0F9Jl1BSSnmaJmRKqXYjJS0HgMRuDRsh0yWUlFKepgmZUqrdSEnLxd/HRp/IoAY/d2BMsF5pqZTyGE3IlFLtRkpaLkNiQ/H2avhL28DoEPbml7K/oNQNkSmlVN00IVNKtQsVdgdr9+QytAH9x6oaGKNLKCmlPEcTMqVUu7B5bwEl5Y4GF/RXGqBLKCmlPEgTMqVUu7DG2aHf1TUsq4vQJZSUUh6kCZlSql1YnZZDsJ83PbsENvoYA6K1sF8p5RmakCml2oWUNKt+zGaTRh9jUEyILqGklPIITciUUm1eaYWdDZl5jS7or6RLKCmlPMVtCZmIvCkie0Uktcq2h0UkXURWOW9nVHnsXhHZIiIbReQ0d8WllGp/NmTkU243jS7or6RLKCmlPMWdI2RvA6fXsP1ZY8ww520egIgMAi4CBjuf84qIuL4ysFKqQ0tJtwr6G7qGZXW6hJJSylPclpAZYxYBB1zcfSrwkTGm1BizHdgCHOuu2JRS7UvK7hzCA32J7xzQpOPoEkpKKU/xRA3ZLSKS4pzS7OzcFgfsrrJPmnPbUUTkehFZLiLLs7Oz3R2rUqoNSEnLJTE+FJHGF/RX0iWUlFKe0NIJ2X+B3sAwIAN4uqEHMMbMMMaMMsaMioyMbObwlFJtTVFZBZv35pPYxOnKSrqEklLKE7zrelBE7nThGIXGmNdcOZkxJqvKsV8H5jo/TQe6Vdk13rlNKaXqtHZPHg4DiU0s6K9UdQmlE/v4NcsxlVKqPvWNkN0NBAHBddzucvVkIhJT5dPpQOUVmHOAi0TET0R6AX2BP1w9rlKq40ppYof+6nQJJaWUJ9Q5Qga8Z4z5R107iEiNbbFF5EPgJCBCRNKAvwMnicgwwAA7gBsAjDFrReQTYB1QAdxsjLG7/mUopTqqlLQcokP8iQrxb5bj6RJKSilPqDMhM8b8tb4D1LaPMebiGjbPrOM4jwGP1Xc+pZSqao2zoL856RJKSqmWVm9Rv4gMEJGJIhJUbXtNPcaUUqrF5BaXs21fYbMnZLqEklKqpdWZkInIbcBs4FYgVUSmVnn4X+4MTCml6pOaXlk/Ftasxx0QE6xLKCmlWlR9NWTXASONMQUi0hP4TER6GmOeB5re8EcppZqgsqC/qR36qzt8pWUe/aODm/XYSilVk/qmLG3GmAIAY8wOrCL9ySLyDJqQKaU8LCUth+7hnegc6Nusx02I0CWUlFItq76ELMt5VSQAzuTsTCACGOrGuJRSql4pabkMbeb6MQBfb11CSSnVsupLyC4HMqtuMMZUGGMuB8a5LSqllKrH/oJS0nOKSXJDQga6hJJSqmXVmZAZY9KMMUckZCJyvfOxJe4MTCml6nK4IWyYW46vSygppVpSY9ayvLHZo1BKqQZKSctFBIY0c0F/papLKCmllLs1JiHTYn6llMelpOXQOzKIIL/6LhZvHF1CSSnVkhqTkJ3V7FEopVQDGGNISc8l0U2jY6BLKCmlWpZLby1FJAyrwL8n4C1iDZIZY25zV2BKKVWbzLwSsvNLm71Df3W6hJJSqqW4OkI2DysZWwOsqHJTSqkWd6igv1uYW8+jSygppVqKq8UX/saYO90aiVJKuSglLQdvmzDIWXjvLonxYZTZHSxYm8WUxBi3nksp1bG5OkL2nohcJyIxIhJeeXNrZEopVYuUtFz6dQ3G38fLrec5bXBXBsWE8M+56ygorXDruZRSHZurCVkZ8BTwK4enK5e7KyillKqNMYaUtFy3148BeHvZeHT6ELLyS3hu4Sa3n08p1XG5mpDdBfQxxvQ0xvRy3hLcGZhSStVk14EicovL3dYQtroR3Ttz0THdeWvpDi3wV0q5jasJ2RagyJ2BKKWUKw536Hf/CFmlv53en9AAHx74MhWHw7TYeZVSHYerCVkhsEpEXhORFypv7gxMKaVqkpKWg6+3jf7RwS12zrBOvtw7eQArdh7k0xW7W+y8SqmOw9WrLL903pRSyqNS0nIZFBOCj1dj+lo33nkj4/l0eRr//mYDkwZFEx7o26LnV0q1by69ohlj3qnp5u7glFKqKrvDkJreMgX91YkI/5w2hIKSCp74ZkOLn18p1b617FtMpZRqgm3ZBRSW2VusoL+6/tHBXDOmFx8v383yHQc8EoNSqn3ShEwp1WZ4oqC/utsm9iU21J8HvkzVDv5KqWZTZ0ImIsOkcuHKBhKRN0Vkr4ikVtn2lIhsEJEUEfnCuUYmItJTRIpFZJXz9mpjzqmUat9S0nLo5OtF78ggj8UQ6OfNQ2cNZkNmPu8s3eGxOJRS7Ut9I2RvAPtFZKGIPCIip4qIq5c2vQ2cXm3bQmCIMSYR2ATcW+WxrcaYYc7bjS6eQynVgaSk5zIkNhQvW6PeJzab0wZ35eQBUTy7cBMZucUejUUp1T7UmZAZY0YB8cBjQClwG7BFRFaLyCv1PHcRcKDatgXGmMr1R35zHlsppepVbnewbk+eR6crK4kIj5w9mAqH4R9frfN0OEqpdqDeGjJjTJEx5ifgeeBZ4GUgkKNHvxrqauCbKp/3EpFkEflZRMbW9iQRuV5ElovI8uzs7CaGoJRqKzZm5lNa4SCxW5inQwGgW3gnbj25D9+kZvLjxr2eDkcp1cbVV0P2JxF5SUQWA3OAScAaYExTlk4SkfuBCuB/zk0ZQHdjzHDgTuADEQmp6bnGmBnGmFHGmFGRkZGNDUEp1casSXcW9Md5foSs0nXjEkiIDOTvs9dSUm73dDhKqTasvhGy14DjserBbjLG3GOM+cIYk9nYE4rIlcCZwCXGGANgjCk1xux33l8BbAX6NfYcSqn2JyUthxB/b3p06eTpUA7x8/bi0alD2HWgiFd+2urpcJRSbVh9CVkYcD3gDzwsIitEZK6I3C8iJzf0ZCJyOvBX4GxjTFGV7ZEi4uW8nwD0BbY19PhKqfYrJS2XxPgwGnnht9uc0CeCqcNiefWnrWzLLvB0OEqpNqq+on67MWalMeYlY8yfgDOAb4GrsK6YrJWIfAj8CvQXkTQRuQZ4CQgGFlZrbzEOSBGRVcBnwI3GGO26qJQCoKTczsbM/FZR0F+T+6cMxM/HxkOz1+Ic+FdKqQapcy1LEUkETqhy8wWWAi8CS+p6rjHm4ho2z6xl38+Bz12IVynVAa3PyKPCYTzWob8+UcH+3H1afx6avZa5KRmclRTr6ZCUUm1MfVOWbwODsK6GPNkY090Yc5Ex5nljzHK3R6eUUrSODv31ueS4HgyNC+Wfc9eRX1Lu6XCUUm1MfVOWI4wxtxljPjTG7GqpoJRSqqrVaTlEBPkRE+rv6VBq5WUTHps+hOyCUp5esMnT4Sil2pj62l7MqO8AruyjlFJNsSYtl8T40FZX0F9dYnwYlx7Xg3d/3UGqs02HUkq5os4aMmCaiJTU8bgAE5oxHqWUOkJBaQVbsguYkhjj6VBc8pfT+vNNagYPfJnKrJtOwObhZZ6UUm1DfQnZ3S4c45fmCEQppWqyNj0XY1p3/VhVoQE+3D9lIHd8vJoPl+3ikuN6eDokpVQbUGdCZox5p6UCUUqpmhwu6A/zbCANMG1YHB8v282T327ktMHRRAT5eTokpVQrV+9alkop5Ukp6bnEhQW0qaRGRHh02hCKyir497wNng5HKdUGaEKmlGrVUtJyGNqK1q90VZ+oYK4bm8DnK9P4fdt+T4ejlGrlXErIROSoa81FJKL5w1FKqcNyisrYub+IxG5tLyEDuPXkvsSFBfDAl6mU2x2eDkcp1Yq5OkK2TESOr/xERM7F6tivlFJus8bZOiIxLsyzgTRSgK8Xj5w9mM17C5i5eLunw1FKtWL1XWVZ6U/AmyLyExALdAEavLi4Uko1RGVB/9A2coVlTU4Z1JVJg7ry/HebOTMxhvjOnTwdklKqFXJphMwYswZ4DLgRq+/YLcaYNHcGppRSKWk59IoIJDTAx9OhNMnfzxoEwD++WufhSJRSrZWrNWQzgduBROAqYK6I3OzGuJRSrcyKnQf5cePeFj1nSlpumyzory6+cydum9iXBeuy+H59lqfDUUq1Qq7WkK0BJhhjthtj5gPHASPcF5ZSqjVxOAx3fLyKB75IbbFz7s0vISO3pM00hK3PNWN60TcqiL/PWUtxmd3T4SilWhlXpyyfM8aYKp/nGmOucV9YSqnWZNHmbHYdKCI9p7jFkok1bbAhbF18vW08Om0IaQeLeenHzZ4ORynVyrg6ZbldRLZVv7k7OKVU6/DerzsP3d++r7BFzrk6LRebwODYkBY5X0s4LqEL54yIY8aibWzZm+/pcJRSrYirU5ajgGOct7HAC8D77gpKqZaUW1TOQ7NTyS0q93QordLuA0X8sHEvpwyMAmDbvoIWOe+atBz6RAUR6OfqxeBtw31nDKSTrzcPfrmWKhMPSqkOztUpy/1VbunGmOeAKe4NTamWsWBdJu/+upNPV+z2dCit0gd/7EKwEgkR2LrX/SNkxhhS0nLbzXRlVRFBfvz19P78um0/s1ft8XQ4SqlWwtUpyxFVbqNE5EZc72GmVKuWvDsHgFkr0z0bSEtb/hbsSa5zl9IKOx8v280pA7uSEBlEbGhAi4yQ7cktYX9hGUntpKC/uouP6U5StzAe/XoducU6MquUcn3K8ukqt38DI4EL3BWUUi0peVcOXjZhXUYeGzLzPB1Oy1jzGcy9Hd4/D/JqH6X5Zk0mBwrLuGx0DwASIgPZlu3+EbIUZ5I8tB2OkAHYbMJj04ZwoLCMpxds9HQ4SqlWwNUpywlVbpOMMdcZY/RVRLV5haUVbMzM46JjuuFtE77oCKNkeRnw9V3QdQiUF8OnV4G95lGa937bSa+IQE7sbS1d2zsyiG3ZBW6vfVqdlouPlzAwJtit5/GkIXGhXD66J+/9tpOUtBxPh6OU8rA6EzIRubOuW0sFqZS7pKTl4jDW8jbj+0Xy5ap07I52XGhtDMy5BSpK4fx34KznYfdv8P0jR+26dk8uK3Ye5NLje2CzCQC9IwMpLLOTlVfq1jDXpOfQPzoYP28vt57H0+48tR8RQX7c/0Vq+/69U0rVq74RsuB6bnUSkTdFZK+IpFbZFi4iC0Vks/NjZ+d2EZEXRGSLiKSIiDaeVW6XvPsgAMPiw5g+Io6svFJ+3brfw1G50Yq3YMt3cOo/IaIPJJ4Px1wLS1+E9V8dsev7v+3E38fGeSPiD21LiAwCYFu2++rIHI72W9BfXYi/Dw+eOYg16bl88PvO+p+glGq36izMN8Yc/ba5Yd4GXgLerbLtHuB7Y8zjInKP8/O/AZOBvs7bccB/nR+VcpvkXTkkRATSOdCXUwZ2JdjPm1nJaYzpG+Hp0Jrf/q0w/35ImACjqvR1Pu1fkL4CvvwzdB0M4QnkFpfzZfIepibFEdrp8DqSCZGBAGzdV8gJfdzzPdp5oIj8kop2W9Bf3VmJMXyybDdPzt/IaUOiiQr293RISikPqG/KckGV+/c29ODGmEXAgWqbpwLvOO+/A0yrsv1dY/kNCBORmIaeUylXGWNI3pXDsO5hAPj7eHHG0Bi+Tc2kqKzCs8E1N4cdvrwJbD4w9WWwVfnT9/azpi/FBp9cDuXFzFqZRnG5/VAxf6XoEH86+Xqxda/7Rsgq66mGxoW57RytiYjwj6mDKS138K+v13s6HKWUh9Q3ZRlZ5f75zXTOrsaYDOf9TKCr834cULURVJpz2xFE5HoRWS4iy7Ozs5spJNURpR0sZl9BKcO7dz60bfqIOIrK7Mxfm+nByNxg6Quw+3eY8h8IPerPCjr3gOmvQeYazDd/473fdjKsWxhDqi3sLSLWlZZu7NafkpaLn7eNfl2D3HaO1iYhMogbxyfw5ao9LN26z9PhKKU8oL6EzK1Vps71MRt0DmPMDGPMKGPMqMjIyPqfoFQtKvuPDe8WdmjbsT3DiQsLaF89yTJT4YfHYNBUGFrH+6r+p8OYO5CV7zBs/zdcdnyPGndLiAhyaw1ZSloOg2ND8PZytStP+/DnCX3oHt6JB79MpazC4elwlFItrL5XvAQRmSMiX1W5f+jWyHNmVU5FOj/udW5PB7pV2S/euU0pt0jedRB/HxsDog9fn2KzCdOHx7Fkyz725pV4MLpmUlEKX9wAAZ1hyrMgUvf+Ex5gk38Sj/m+yZnRB2vcpXdkEOk5xZSUN/8i4xV2B6npeR2ioL86fx8vHpk6mK3Zhbz+iy4VrFRHU19CNhWrGex/qtyvemuMOcAVzvtXALOrbL/cebXl8UBulalNpZpd8q4cEuPDjhqJmT4iDoehfSxr89O/ISsVzn4RArvUu3tGQTmX592A3ScIv1lXQenRC2AnRAZijHsWGd+aXUhxuZ3EDlLQX92E/lFMHhLNC99vZveBIk+Ho5RqQXUmZMaYn+u61XdwEfkQ+BXoLyJpInIN8DgwSUQ2A6c4PweYB2wDtgCvA39uwtelVJ1KK+ys25PHcGdBf1W9I4NIig9lVnIbH6Dd9RsseR5GXG5NR7rgwz92k2XCKDzzdTiwFebcavUuq6LySkt3dOxf7Szo74gjZJUeOmsQXjbh4Tm6+LhSHYlbizSMMRcbY2KMMT7GmHhjzEznAuUTjTF9jTGnGGMOOPc1xpibjTG9jTFDjTHL3Rmb6tjW7smjzO5geLfONT4+fXgc6zPyWJ/RRpdSKi2AL26E0HirrYULyu0OPvxjFyf1i6Rr0ilw8oOw9gv44/Uj9kuIcF8vsjVpuQT5eZMQEdjsx24rYkIDuOOUfny/YS8L1mV5OhylVAvpWFWzSjkl78oBqHGEDOCspFhrKaW2Okq28EE4uAOmvQp+ri0/tGBtFtn5pYdbXZx4O/Q7HebfB2krDu0X4OtFXFgAW92QkKWk5TAkLuTQygAd1ZUn9mRAdDCPzFnb/lqwKKVq5FJCJiJHXZpV0zal2orkXQeJCwuga0jNTTi7BPkxvl8ks9viUkqbv4Plb8IJt0DPE11+2ru/7iC+cwDj+0VZG2w2mPZfCI6BT6+AosMtBd3R+qKswsH6jHySOvB0ZSUfLxuPThvCntwSnv9+s6fDUUq1AFdHyGpqCtvgRrFKtRZVG8LW5pwR8WTllbatvlBFB6y1KiMHwoQHXH7apqx8ft9+gEuP74FX1dGpTuFwwdtQkGVdremw2jFYi4wXNmuN08bMfMrsDoZ20IL+6kb1DOeCUfHM/GU7GzOPvrhCKdW+1Nepf7KIvAjEOdeZrLy9Deg4umqT9uaVkJ5TfET/sZpMHBhFsL83X7SlnmTz7obCbDjnNfBxfQme93/bia+3jQtGdTv6wbiRVh3a5gWw5FnAGiErKK1gb37zLTJeWdCvI2SH3TN5IEH+3jz4ZWrLFvjvWAzFOS13PqVUvSNke4DlQAmwosptDnCae0NTyj0ONYTtXnNBfyV/Hy+mDI3h27VtZCml1M8h9TM46R6ISXL5aQWlFcxamc6ZQ2MID/SteadjrrUay/78JORnHSrsb846sjVpuXTu5EN854BmO2ZbFx7oy72TB/DHjgN83lJvDDYtgLenwP/Ot/rYKaVaRH1tL1YbY94B+hhj3qlym2WMqblrpFKtXPKuHHy8hMGxIfXuO314G1lKKS8Dvr4L4kbBiXc06KlfJqdTUFrBpaNr7swPWA1lJ/4d7OWw5Hm3tL5YnZbD0PgwpL7mtS3JYYe9G6CizGMhnD+yGyO6h/HveevJKXJzHCV5MPd2CIqGtD/g6zuPanuilHIPV2vIeorIZyKyTkS2Vd7cGplSbpK86yCDY0Px9/Gqd99jPLCUksNhmLcmg4dmp/LurztYvuMAhaV1jNAZY/ULKy+x1qP08nb5XMYY3v9tJ4NjQ+qdwqVLb0i6CJbPJNqWay0y3kwjZMVldjbvLSCpNdWPlebDBxfAK8fBkwnw8aWw8l0r+W1BNpvw2PSh5BSX8+T8je492cKHID8DLvoAxv0Vkt+H319z7zndZM7qPdpcV7Uprr5yvwX8HXgWmABchbbMUG1Qhd1BSlouFx1bQ61UDSqXUnrlpy1k5ZXUelVmczDG8MOGvTy9YBPrMvLw9bYdWtNQBHp2CWRQbAiDYkIYHBvC4NhQIoP9YMXbsGUhnPEfiOjToHMu23GQDZn5PH7OUNdGpsbeBas/wrb0eXpFnNFsI2TrMnKxOwxD41pJQpabDh9cCHvXwfh7oCATNi+E9V9Zj3cdCn0nQd9TIf6YBiXBjTEwJoSrTujJzCXbOX9kfL3T7Y2yfRGseAtG3wLxIyF2uPX1z78PogZAwknNf043+XXrfm77MJnpw+N49sJhng5HKZe4+ioSYIz5XkTEGLMTeFhEVgAPuTE2pZrdxqx8isvtDfqHNn1EHC/9uIXZq9K5flzvZo/JGMOSLfv5z4KNrNqdQ/fwTjx7YRJnJ8WRlVfCuj15rN2Tx7qMXFbvzuHrlMMjNMOCDvKR/R4yQo9lnd8ZDN5XSPfwTi738Xrvt50E+3szdVica8EeGiV7k2E9JrIoo7wxX/JRVu/OBSCpvlG6lpCRYo2MlRbAJZ9An1Os7cZYCcrmhdZtyfOw+BnwD4XeJ1vJWZ9TICjKLWHdPqkfc1MyeODLVGbffGLzLr5eVmiNsoYnwIT7rW02G0x/Fd6YBJ9eCdf9COG9mu+cbmJ3GP45dx0A36/PotzuwKeDLVSv2iZXE7JSEbEBm0XkFqxFv4PcF5ZS7nGoIWwD/vH3jgwiqVsYs1Y2f0K2bMcB/jN/I79vP0BsqD//Pmco542MP/QPJDYsgNiwAE4Z1PXQc3KLy1m3J4916QeY8OtVVFR4cWn25aR/uAqAID9vBsYEO0fSQhkUG0LfrkH4eR85Rbs3v4RvUzO47PieBPjWP317yLi/wOqPOLf4Mz44eBYl5XaXpn/rsiY9l6hgP7eOQLpk80Ir+fAPhau/heghhx8Tga6DrduY262rELf9ZD1ny0JrVQOwRpb6ngp9JkHcCLA17XtTKcjPm4fOGsSf/7eS937byVUnNmNy9MNjViPhK78G306Ht/sFw8UfwOsnw4cXw7ULXW407Cmfr0hjXUYeU4fFMnvVHn7btp+xfSM9HZZS9XI1Ifs/oBNwG/BPrGnLK+p8hlKtUPKuHCKC/Bp8Jd85w+P4+5y1rM/IY2BM/RcD1Gf17hyeXriJRZuyiQz245GzB3PRsd2OSppqEhrgw+jeXRid8R4Ur4FzXuf7geeyOauAdRm5rHWOqH26Io13ft0JgLdN6BMVxODYUAbHhjAoNoRfNmdTbjdccnz3hgUfngBJF5OU8ikRZgw79hcyILpp35PVaTmeX79y2UyrbUjXQfCnTyAktu79A8Jg8DTr5nBA1hqrNcjmhbDoKfj5CQgIt0bN+p4KfSZafd2aYPKQaMb3i+SZhZs4b2Q8wf4+TToeALuXwW+vwKhroOeYox8PT4Dz34b3zrGW47rgPWv0rBUqKK3gqQUbGdE9jMfPSWThuiy+Tc3UhEy1CS4lZMaYZQAi4jDGXOXekJRyn+TdBxneveFX8p2VFMs/567ji+R0BkYFwFtnQEgMjLsbooe6fJz1GXk8s3ATC9dl0bmTD/dOHsDloxs4QgWQmQo/Pma1ohh6Pv4iDI0PPaKpqsNh2LG/kHUZzinPPXn8vCmbz1emHdpnTJ8Iekc2YrB73F3YVn/Ijd5z2ZY9sUkJWX5JOduyC5nu6rRpc3M44Lu/w9IXrMTpvDcbPgpks1mtRmKSrN+JogOw9YfDo2drPgEE4kdZ5+g7CaKTGpzYiAh3ndqPs19awsfLdnPt2ISGxVldRSnMvhlC4uCUh2vfL+Ekqxfdt3+Dnx+HCfc17bxu8upPW8nOL2XGZSMJ8PVifL9IFq7L4p9Th3T45bhU6+dSQiYio4GZWNOU3UUkCbjBGPNndwanVHPKKSpjW3Yh542Mb/BzwwN9Oal/JF8mp/O3Pml4pf0BXr6wbjb0nwLj77amqmqxZW8Bz323ibkpGQT7eXPnpH5cdWLPxo1wVJRaXfP9w2DKs9ZUWg1sNiEhMoiEyCDOTDw82rM3r4S1GXlsysxn4sCuNT63XuEJ2IdeyCWrP+WDtB0wNKZxx8GargQ806G/vNj6Xq6bbY0QTX6yeQr0O4XD0POsm8MBe5KtxGzzAvjxX1YyHRhlJWZ9TrFq0ALCXDp0YnwYxyeE8+bi7VxxQs+m1Uf9/CTs2wiXfA7+9STVx90AmWuskb+ug603A61I2sEiZvyyjWnDYg/ViJ4+JJpvUjNJ3p3DyB5uuBBCqWbk6ivPc1iNYOeA1Z9MRMa5Kyil3GFVZUPYbo17YZ4+PJ7v1u8l+9fPiPYLhVuXw/K34LeXYcbX1sjHuL9Ct2MOPWfX/iKe/34zXySn4e/jxc0TenPd2ATCOtXSgNUVPz0OWalw8ccQ2KXBT48K8ScqxJ8J/ZtWfO590t2Q8hG9N8+EyaMbfZw1aVZC1uJTloX74MOLIG05nPqodXWhO3qg2WzWVYvxI62mvQXZsPV7Kznb8DWs+h+IF3Q77vCVm10H1xnL9eMSuPrt5cxbk+H6BRnVZaTA4mch6WLoe0r9+4vAmc9YCdwXN0J47yNr7DzsiW83YhP46+kDDm2bMCAKHy9h/tpMTchUq+fyW0FjzO5q0zz25g9HKfdJ3pWDTSCxkSMxEwdG0cXfQejO+ZA43bqa7qS/wfE3wbLXYelLMPMUSJjAvlG388zGLnyybDc2m3D1ib248aTeRAT5Ne2L2PU7LHkORlwO/U9v2rGaKjyBJZ0mcfyB2ZD/KARHN+owKWm5xHcOqH2VAHfYtxn+dx7kZ8IF77TsaE9QpHWlatJFYK+A9BXO2rMF8P0j1i041kqS+p5qTRdWm0I9qV8UfaKCeO3nbZydFNvwZrr2cmuqslMXayrSVd5+cOH7MGMCfHQxXPdTo94UNLcVOw/w1eo93HZyH2LDDteHhvj7MLp3BPPXZnLv5AGtq+mwUtW4Ota9W0ROAIyI+IjIX4D1boxLqWaXvDuH/tEhBPo1bkrK38eL23vsJMBRSEn/aVUeCLH6c92+hoJxD1GwaxURn0zl7OTruW9gNov+chIPnDmo6clYaYE1vRYa37B/om60sufVeJkKzOJnG32M1Wk5Lbt+5Y4l8MYp1vfzyq89O/Xm5Q3dj4OJD8KNv8BdG2Hqy9Yo69ovrWa0T/SCt8+EJS9YqwYYg80mXDe2F+sy8li6dX/Dz7vkechMgSlPN/xCg+BouOh9yM+CT6+wkjsPcjgM/5i7nqhgP24Yf/RV0KcPjmbn/iI2ZukC7ap1czUhuxG4GYjDankxzPm5Um2Cw2FYtcsq6G+KM+RX9ptgvinse8T2g4VlPP5DGsf8OJjjip5lTvQtHBO8n6u33kb0rOlWgXdTl6BZ+JDVmmDaq62m9UB4/ABm2cfC8ret0aYGOlBYRtrBYvfXjxkDWWut9g7vTbNGN6/9ziqyb02Co2H4pXDBu/DXbXDlPBh9s3WRwMIHrVUDnkuEb+9lWoIhIsiPGYsauGhK9karDmzQVBh0duPijBsJZ78IO36Bb+9p3DGayZzVe1i9O4e/nj6gxjdbkwZ1RQS+TW3ly5+pDs/Vqyz3AZe4ORal3GbbvgLySioa1H/sKGWFhKf/wJfe45i1Oovpo3qSV1LOzF+2M3PxdgrLKjg7KZb/m9iXhMjpUP4gJL9n1em8N91aZ3L836w6oYZOnWz5DpbPhBNuhZ4nNv5raGYJkYHcb5/G+Y7FsPg5mPx4g56fkpYDNH4auU4Oh7Ue44a5sH4uHNwOCPQ7zWp4GtDKa4q8fKyfdc8TYdIjkJt2uCntHzPw++N13ul6FjdsHs/GzIH0j3YhSXfYYfYt4BtorezQFEkXWq0+lr4IXYfAqJa/AL+4zM4T325gaFwo5wyvuZYuMtiPUT06M39tFref0q+FI1TKdXUmZCLyIlDr23pjzG3NHpFSbrCysiFsU5ac2fgNUl5E6eBpLF65j//M38h7v+0kt7ic0wdHc8ekfkf+U/Txh2Ovs+q9Vn0AvzwDH5wPMcNg/F+h/xmuJWZFB6x/opEDYcIDjY/fDRIig9hlurIt9ix6r3jLapjagFqyyoL+ZlsyqaLMWgJow1ewYR4U7gWbDySMhxP/z/qeBzfyylJPC423kp5RV0HOLlj8HIOS3+NH39ms/Gg+XPaotZJCXf6YYSWp02fUuaJAVl4JkUF+9beKOOUR2Lve6t8WOQB6NP7ijsaYsWgbGbklPH/R8DpjPW1wNI9+vZ5d+4vo3qVTrfsp5Un1TVkuB1Y4b2dXuV95U6pNSN6VQ4i/NwkRgY0/SOosCI7h2PFTMAZe+nELI7qH8dUtY3j1spG1j1B4+1n/RG9bCWe/BCW58NGf4NUxVp2Qw1H3eefdDYXZcM5rVpLXisSE+BPg48W8zpdYtUSLn2vQ81en5ZIQGdi0Bqel+dbP5rOr4ane8L9zYc1n1sjSuTPhr1vh0s+tn0FbTcaqC+sOZz6D/N9qVkSdQ9LBhZiXRsGsG6wLFmpyYDt8/w/rQoHEC2o99KrdOZz4+A88Ns+FMmGbl/U9DusOn11lvXloIZm5Jbz681YmD4nm2F5118GdNth6kzB/rU5bqtarzhEyY8w7lfdF5PaqnyvVliTvOsiw7p0b3xyyOMfqI3XMdSREhfDCxcOJC/NnZI8GFER7+cCIy6w2A6mfWd3cP73CGlkYdzcMnn70Mjupn1v7nvyA1XS0lbHZhF4RgazI94NhF1uLUzdglCwlLYcT+0Q0/MQF2bBxnjUdue0nsJdBpwirLmrgWdBrfKtLXt0iJJa4i19g3FMTeLHHYo5b/yWkfAxDzrF+p6IGWvsZA1/dZrXXOLP23nUl5Xbu/GQVFQ7DO0t3cPGx3ekTVU/j4IAwq5nuGxPh67us+y1wNeNT8zdidxjunTyw3n27hXdiUEwI89dmct24JjbTVcpNGtJRsIkVyUp5RkFpBZuy8ptWP7bha+uf/pBzATg7KbZhyVhVXt5Wy4Ob/7BGFwA+vwZePg5Wf2S1QgDIy7D+wcWNghPvaHzsbpYQGci27EIY+5cGjZJl5ZWwN7/U9enKgzvg15fhzcnwdD8rwcjeAMdcB1d9A3/ZBFNfsmrEOkIy5tQtvBPHDB3ItZnTKPhzspUQb5oPrxwPn1xuNXNd+Y41lXvqP6ypz1o8NX8j27ILef6iYQT4ePEvV0bJAGKHwUn3wtpZ1uikm6Wk5fD5yjSuGtPT5SnI0wZHs2LXQfbml7g5OqUap8UXJBOR/iKyqsotT0RuF5GHRSS9yvYzWjo21T6lpOXgMDTtCsvUzyGsh7VYdHOxeVmd3G/6Fc5/x5ra/OIGeGkUrHwP5twK5SVWAXpzdI93k96RQew+WERJcPfDo2QuXHG52tmoN6lbLQmZMdYSUT89Dv8dA88nwfz7oDTPasB7wy/wfylw+r+gxwnNtoh3W3T92ATySyr4KLXIWgLp9jXW92jrj9bU+Ly7oedYGHFlrcf4bdt+3lyynctH92DqsDhundiHHzbs5edN2a4FceLtVnPbr++yLkBwE2MM/5y7ji6BvtwyoY/LzzttSFeMgYXrstwWm1JNUWdCJiL5zoQpD0isvF+5vTEnNMZsNMYMM8YMA0YCRcAXzoefrXzMGDOvMcdXqrpkZ0H/sMaOkBXus6bFhpzrvk7ug6dZCcZFH1h9zebcYk2RTvoHRPSt9xCelBAZiDGwc39RlVGy+vuSrUnPxcsmDIqpkpA57LDzV5h/P7wwDF490UrIfAOtbvq3JcNNS2DCvRCT2CJTY21BUrcwju0VzltLdlBud1i9xU6+30rMJtxvTXef/WKta2cWlFZw92er6R7eiXsmW53urzihJz26dOLRueuosNdT5wjWm4bpr4KjAr68qf7ayEb6JjWTZTsOcuep/RpUe9i/azA9u3Ri/lpNyFTrVGdCZowJNsaEOG/eVe4HG2Mav5rwYROBrcaYnc1wLKVqlLwrh4TIwMYvV7RuNhj7oelKt7HZYMAUuP5n+NMnMOmfcMy17j1nM6hcnHxbdgGE97JGyZa/ZU251mF1Wi59o4IIsFXApgXWiODT/eGt062rAbv0hbOet6Yir5lvtfwI1/qf2twwLoH0nGLmranyfQ8Is67ovfY762dTi3/NW0/awWKePj+JTr7WaKyftxf3nTGQzXsL+PCPXa4FEZ4Ap//bmh79/dUmfDU1Kym38+9v1jMgOpgLR3Vr0HNFhNMGR7N0yz5yiz3bzFapmrT4lGU1FwEfVvn8FhFJEZE3RaTG/gQicr2ILBeR5dnZLg6lqw7LGMOq3QcbvX4lYF3BF9HfWl+wJYizV9aJt9U6otGa9HJeubptX6G1YexfrFGSJc/V+hxTkkvs7q95wvEsPJlgtQNJnWVNq507E+7eCpd+BiOvrLM9gzpsQv8oekcGMmPRNkwDmhD/tHEvH/y+i+vHJjCq55F1kacO6srohC48s3ATuUUuJjEjLod+k+G7h62WGM3orSU72H2gmAemDMK7EYuqnzo4mgqH4ccNe5s1LqWag8de7UXEF6uVxqfOTf8FemOtApABPF3T84wxM4wxo4wxoyIjI1siVNWGpR0sZl9BWePrx/L2wM4l7puubAcC/byJCfVn694Ca0Nto2QFe2HF2/D+efBkHx43z9G/JNm6IvBPn1qd6c9/y6qr82+OAfiOxVpOKYG1e/L41cXllHKLyvnb5yn06xrEHZOObpoqIjxw5kByist58Yda2mkc/SQ4+wVrNYlZ11m94ZpBdn4pL/+4hYkDohjTtxFX5gLDu4URFeyn7S9Uq+TJt9+TgZXGmCwAY0yWMcZujHEArwPHejA21U6s3HUQaEJB/9ovAWMlDapWCZGBbK0cIYPDo2TfP2J1cp95GvynH3z1f7BvE9sS/sR5pQ+x+dKVVm1Tv1OtixpUk0wbHkdEkC8zfnFtOaWHv1rL/oIynj5/GP4+NV8UMTg2lAtHdePtpTusaWlXBEVZP9fMNfBT86y7+szCTZSU27lvSv1tLmpjswmnDu7KTxuzKSm3N0tcSjUXlxIyEXnClW0NdDFVpitFJKbKY9OB1CYeXymSd+UQ4ONF/66NXPsx9XOITmz1hfWelhARxLbsgsNTZZWjZKs/hAUPQFkhnHQP3LgY/m81n4TfSIptEP1jwzwad3vj7+PFFaN78tPGbDZm1r2Y9repGXyRnM4tJ/epdy3Ru07tj7+PF/+at8H1YAacYU1fLn7OulCjCbbsLeDjZbu4bHSPQzWLjXX64BiKy+0scvXqUaVaiKsjZJNq2Da5sScVkUDnMWdV2fykiKwRkRRgAtB6Gy+pNiN5dw6J8aGNqjfh4A5IX+7+Yv52oHdkIPklFWQXlB7eOOmfcNYLcNsquGmxlZBFDwURVqflMDAmGF/v1l8j19ZcenwPAny8eL2OUbJ9BaXc/0UqQ+JCuNmF1hGRwX7cPKEP363PYvHmfa4Hc9q/oHMP+OJ6KGnUhfkAzFq2nVG2Tfx5fD1LQ7nguIRwQgN8+FanLVUrU1/bi5tEZA3Q31lsX3nbDqQ09qTGmEJjTBdjTG6VbZcZY4YaYxKNMWcbY+q+REupepSU21m3J7fx61emOt8vDJ7efEG1UwmHrrSsMm3ZKRxGXnHU1X0OhyE1PY/E+LAWjLDj6BzoywWj4pm9Kp2svKOboBpjeOCLVPJLKnjmgmH4uPhm5aoTe9ItPIBHv16H3eHiRQN+wTD9Nasv2fx7G/JlWBwOHKs/4ZJl5/KJz8NEbny/4ceoxsfLxsQBUXy/fq/VIkSpVqK+v8QPgLOAOc6PlbeRxphL3RybUk2ydk8e5XbT+Pqx1FkQf6z1Dl/VKSHSeaVl1YSsFtv2FVJQWlHvNJlqvKvH9MLuMLy9dMdRj325Kp1v12Zy16n96NeAqXx/Hy/umzyQDZn5fLxst+vBdD8extwBye/D+rmuPccY2PIdzBiH7YvryHX4czB0MPzwaLOsl3nakGhyi8v5Y3vLrb2pVH3q60OWa4zZYYy5GEgDyrGWUAoSke4tEaBSjZVcWdDfmIaw2Rsha41OV7ooNjQAfx8bW10o+l6TngNAko6QuU2PLoGcPiSa93/bSUFpxaHtGbnFPDR7LaN6dObasQ3v6Xa6cyHvpxdsJK+kAb28xt9j1WJ+dZt1tW1d0lfAu2fD++dCSS4fd3uI88zj+J33qjXt+eNjDY67unF9I/H3sfFtqk5bqtbD1aL+W4AsYCHwtfPm4lsdpTwjeXcOcWEBRIU0Yl3D1FmAWB30Vb2sRcaDXLoKb/XuXAJ8vOjtHFVT7nGdczmlytEsYwx/+3wNFXbDf85PwsvW8DYuIsKDUwZxoKiMl3/Y4voTvX3hnNehtABm32KNgFW3fyt8cgW8fjJkrYXTn6Dsxj/4V9pQThkUQ6duiVaj5OVvWldvNkGArxfj+0WyYF0mDlenX5VyM1cram8H+htjBjvrvIYaYxLdGJdSTbZqV07jpiuNsa6u7DkGgqObPa72KiEy8HBz2DqkpOUwJC6kcRdaKJcN796ZY3uG8+bi7VTYHXz4x24WbcrmvjMG0DOi8cnw0PhQzhsRz5tLtrPDhZ/3IVEDYNIjsHm+1Y+uUn4mzL0DXj4WNi+E8X+zLgQ5/kZ+3pZHbnE504bHWvtOuBf8w+Cbv9Wc1DXA6UOiycorZXVaTpOOo1RzcfUVcTeQW+9eSrUSWXklpOcUN66gP3MN7N+s05UN1DsyiN0HiiitqL2/U4Xdwdo9WtDfUq5zLqf02qJtPPr1Osb0ieCS45peE3n3af3x8bLx728a2In/2Bug13hrkfg9q6yasBeGw8p3rVUZbkuGCfcdagz85ap0wgN9GdvX2QQ8oDNMfMhq1rx2Vq2nccXJ/bvibRO92lK1Gq4mZNuAn0TkXhG5s/LmzsCUaorKBcUbNUKW+jnYvGHg2c0aU3vXOzIQR+Ui47XYlFVAaYWDRC3obxETB0SREBHIU/M34iXCE+clYmvEVGV1USH+3DyhD/PXZrF0awPaYNhsMO2/4OUDM8bDoqeg3+lw8x8w5WkI7npo1/yScr5bl8WUoTFHXgk64nKrHm3Bg1Z/u0YK7eTD6N5dWLA2q0FLTSnlLq4mZLuw6sd8geAqN6VapeTdB/H1sjE4toFL8Bhj1Y8lTIDALu4Jrp1KiKiyyHgtKgv6dYSsZdhswg3jreL9h84aRFxYQLMd+5oxvYgLC+DRuetdb4MBEBpn1ZMNng7X/Wgtl9Xl6P5i89dmUVrhODxdWcnmBWc8BXnpsPjZJn0Npw2OZvu+QjbvdXEFAqXcyNuVnYwxjwCISCdjTO1vf5VqJZJ35TAoNgQ/75qXg6lV2nLI3WVNm6gG6eUs0t9aR+uL1Wm5BPt70yO8U0uF1eFdMKobxyd0oUeX5r2Iwt/Hi3vPGMAtHyTz2YrdXHhMAy6873eadavD7FXpdAsPYERNZQfdj4ehF8CSF2DYJUf1unPVqYO68uDsVL5NzWxQCxCl3MHVqyxHi8g6YIPz8yQRecWtkSnVSBV2BylpjSzoT/0cvPysZV9UgwT5eRMd4l9n64uUNGvlhOaYNlOuEZFmT8YqTRkaw6genXlq/ibyG9IGox5780tYsmUfU5PiEKnld2XSI1ZpwYIHGn2eqBB/RnTvbC02np8FedqPXHmOq1OWzwGnAfsBjDGrgXFuikmpJtmQmU9JuaPhBf0OO6z9AvpOAn+tcWqMhMjAWpvDlpTb2ZiZz9C4sJYNSrmNiPDgmYPYV1DKKz9tbbbjfrU6A4fh6OnKqkJiYdxfYMNc2PJ9o8912uCu+GUsx/7ycfDaWMjb0+hjKdUULl93boyp3pq59kuplPKgFTsb2RB251IoyNSrK5vASsgKaiyS3pCZT7ndkKQF/e1KUrcwzhkex8zF20nPKW6WY85elc7g2BD6RNUzjTj6ZujcC769ByrKGnWuaf7JfOD7GAUSBGVF8MnljT6WUk3hctsLETkBMCLiIyJ/ARp4vbNS7peZW8IL329mQHQw8Z0bWMCc+jn4BNZb26Jq1zsyiLySCvYVHP0PbY2z31NiY1ZOUK3aXaf1B+DpBRubfKxt2QWkpOUydVgdo2OVvP3g9Mdh3yb4Y0bDT/bH60R9cx3bvRO4M/gpmPYypC1r3LqbSjWRqwnZjcDNQByQDgwD/uymmJRqlHK7g5s/WElxuZ2X/jS89tqTmtjLYd1s6D8ZfLWDfGMdXmT86Dqy1Wm5dAn0JTa0ESsnqFYtLiyAq07syRfJ6azd07SWlV+u2oMInJ0U59oT+p0GfSbBT49bdWCuMAa+exjm/QX6nsZ3x7zBD7sdZHc/A064FZa9Aas+bPTXoFRjuJqQ9TfGXGKM6WqMiXIuLD7QnYEp1VCPf7OBFTsP8sS5ifVPdVS37WcoPqDTlU2U4OwAX1PH/jVpuSTGhzYsUVZtxp9P6kNogA+Pf7Oh0ccwxjBnVTrH9+pCtKuJuwic/m+oKIHv/1H//hVl8MWNVsuMkVfBhe8zMbGnlaOtz4KJD0PPsTD3dshY3eivRamGcjUhe9HFbUp5xLw1GcxcvJ0rT+jJWUkuTHVUl/o5+IVCn4nNH1wHEhcWgJ+3ja3V+joVlVWweW8+Q7X/WLsVGuDDrSf35ZfN+/h5U3ajjrE6LZcd+4vqLuavSURfOP4mWPU+pK2ofb+SPPjgfEj5CE5+AM58Fry8GRgTTPfwTrz7604OljjgvLegUxf4+DIoOtCor0WphqozIXO2u7gLiKzaoV9EHgYa2OBJKffYll3AXz9LYVi3MO47oxEDt+XF1pVaA8+yalJUo1mLjB+9pmVqeh4Ogxb0t3OXHd+D7uGd+Pe8BjaLdfoyOR1fLxunD4lp+MnH/xWCusI3d4PDcfTjeRnw9hmw/ReY+gqMu9saXcO6WvS+MwayNbuAs19ezKZCf7jgXcjPgFnXWVdgK+Vm9Y2Q+QJBWA1kq3bozwPOc29oStWvuMzOTe+vxMdLePmSEfh6N2DB6rIi+ON1a1Hj0jxIvMB9gXYgvSODjqohS3EW9A/VhKxd8/W2cfdp/dmQmc+slWkNem6F3cHclD2cPCCK0ACfhp/cLxgm/QPSV8DqavVf2Rth5iTYvw3+9AkMv+Sop58+JJqPrz+e0nIH019ewnd53WDyE7DlO6s+TSk3q/O/lzHmZ2eX/uONMY9UuT1jjNncQjEqVSNjDPd/uYZNe/N5/qLhri8LU3wQfn4KnhtiFfUGRVsv0gnj3RtwB5EQGcjug8VHLDKekpZLTKg/UcFa0N/enZkYQ1J8KE8v2ERJuesjS0u27mdfQVnDpyurGnoBxB9rFeyXOC8u2PUbzDwVKkrhqq+h7ym1Pn14987MuWUMvaOCuO695bySPxYz7BJY9CRs/KbxcSnlAleHE4pE5CkRmSciP1Te3BqZUvX48I/dzFqZzv9N7Mu4fpH1PyE3HebfD88OgR8fhbhRcNU3cM0CbXXRjHpHBmF3GHZVWWR8TXquLijeQVRO/2XmlTBz8XaXnzc7OZ1gf29O6h/V+JPbbNaoVmE2/PwkrJsD75wNgRFw7UKIHV7vIaJD/fnkhtGclRjLk/M3cXfR5Tiik2DWDbC/+ZrfKlWdqwnZ/7CWTeoFPALsAJa5KSal6rUmLZeH56xlbN8Ibj25b907Z2+C2TfD80nw23+h/xlw4xK45BPoccKhOhLVPBKqrWmZW1zO9n2FuqB4B3JcQhdOGdiV//60lf0FpfXuX1xmZ/7aTM4YEoO/TxPLk+NGwIjLrL/1Ty6HmES4egF07unyIfx9vHj+omHcfVp/Pl+znxtK/w+H2ODjS6Gs9rValWoKVxOyLsaYmUC5cxrzauBkN8alVK1yi8q56X8riAjy5fmLhuNV27qIaSvgo0usGrE1n8Goq+C2ZDj3dYge0rJBdyC9DrW+sOrIUtOtqSMdIetY7pncn+JyOy/+sKXefReuz6KwzM7UpkxXVnXyQ9ZVkgOmwOVzILBLgw8hItw8oQ8zLhvF0v2B/F/5LZi962HObVYfM6WambeL+1WuGpshIlOAPUC4e0JSqnYOh+HOT1aRlVfCJzeMJjzQ9+idsjfC13fBjl+sNSnH/QWOvQGCXJjWVE0W7O9D1xA/tu61RhJWVxb0x2lC1pH0iQrmwmO68f5vO7nyhJ70jKi94fLs5HSiQ/w5rlfDE6caBUXCHWvBu4bXhwaaNKgrs/58Ite+68uz+RdwZ+rHED/KarOhVDNydYTsUREJBe4C/gK8AdzelBOLyA4RWSMiq0RkuXNbuIgsFJHNzo8NXB1atXf//Xkr32/YywNTBtW8eLi9HD69CrLWwqmPWS/KJz+gyVgLS4gIOjRClrI7lx5dOhHWqen/HFXbcvspffH1tvHk/NqbxR4sLOPnTdmclRRT+2h3YzRDMlapf3Qws28ew7L4K1hgH4l9/v3Yty9ptuMrBS4mZMaYucaYXGNMqjFmgjFmJNC7Gc4/wRgzzBgzyvn5PcD3xpi+wPfOz5UCYOnWfTy9YCNnJcVy+egeNe/02yuwdy2c/SKccIt1KbxqcdYi44UYY5wF/WGeDkl5QFSwP9ePS2DemkxW7jpY4z5fr8mgwmGYOszFpZI8JDzQl3evHc1vSY+xwx5FwXuXUJC9y9NhqXakAU2bjnJns0Vx2FTgHef9d4BpbjiHaoOy8kq47cNkekUE8vg5Q2tefidnl9UvqP8ZMPDMlg9SHdI7Mojc4nI2ZRWQnlNMok5XdljXjU0gIsiPf329HlND7dXsVen0iQpicGyIB6JrGB8vGw+dN5q1Y1/G217EzlfPZ+femhNNpRqqKQlZU8eWDbBARFaIyPXObV2NMRnO+5lA16NOKnK9iCwXkeXZ2Y1bnkO1LeV2B7d8sJKiMjuvXjqSQL8aSh+NgXl/te5PfrJlA1RHqbzS8stV6YAW9HdkgX7e3DGpL8t3HmTBuiMX/047WMSyHQeZNiy2Ta1xevakiaSNe4rB9g0sfeVGlm7Z5+mQVDvQlISsqZeZjDHGjAAmAzeLyLgjDm69lTrqHMaYGcaYUcaYUZGRWhfUETz57QaW7TjIv88ZSt+utUxBbpgLm76Bk+6FsG4tG6A6Su/IIADmrNqDCAzWEbIO7cJR3egdGcgT32yg3H54WaPZq/YAtPrpypr0n3gFecNu4GK+5bO3n+a9X3d4OiTVxtW3lmW+iOTVcMsHmnR9sjEm3flxL/AFcCyQJSIxznPHAHubcg7V9s1elc7rv2zn8tE9an/RLs23Rse6DtErn1qJWOci4+k5xfSJDCKoplFN1WF4e9m4Z/JAtu0r5KNluwFrpY3Zq9IZ2aMz3cI7eTjCxgk5619UdDuBf/vM5IM587j/izVHJJxKNUR9SycFG2NCargFG2Ma/QorIoEiElx5HzgVSAXmAFc4d7sCmN3Yc6i2b+2eXP72eQrH9OzMA1MG1b7jj/+yFgE+8znwasQaeKrZeTkXGQddv1JZThkYxbG9wnn+u00UlFawPiOfTVkFTBvWTL3HPMHLG+8L38E3qAsfhLzEV7+v49I3fudAYZmnI1NtUFOmLJuiK7BYRFYDfwBfG2O+BR4HJonIZuAU5+eqAzpYWMYN760gLMCXVy4ZWfui4Rmr4fdXraav3Y5p2SBVnSrryJL0CkvF4SWV9hWUMePnrcxelY63TZiS2IYTMoCgKOSCd+lcvpcFPd5n1e4DTH15MRsz8z0dmWpjPJKQGWO2GWOSnLfBxpjHnNv3G2MmGmP6GmNOMcYc8ER8yrMq7A5u+XAle/NLefWykUQG+9W8o8MOX91udeSe+FCLxqjqlxBh1ZFpQb+qNKxbGGcmxvD6L9v5fGU64/pF1tzcua3pdgxMfpzorEX8fMwflJY7OOeVJSxYm+npyFQb4qkRMqVq9eT8jSzZsp9Hpw1hWLew2ndc/ibsWQmn/RsCtIdwa3P6kGimDI1hcKwmZOqwv542gAqHg30FpUxty9OV1Y26BpL+RHTyc8yfUkSfqCBueH8FL/+4pcZ2H0pVpwmZalVmr0pnxqJtXD66BxeMquNqybwM+P4fkHASDD2vxeJTrhsSF8rLl4yofbpZdUjdu3Ti6hN7ER7oy6RBR3U2artE4MxnIDqRzt/cwifnd+XspFiemr+R//toFSXldk9HqFo5faVUrUZlEf+xPcN58Mw6ivgB5t8LFaUw5RnrhVAp1Wb87fQB/PLXCXTybWdX3/oEwIXvgQh+n1/Bc9P78rfTB/BVyh7Of/VXMnNLPB2hasU0IVOtQmURf+dOvrx8yQh8vOr41dz8Haz9AsbeBV2aYwUvpVRLstmk5gbP7UHnnnDeTNi7Dpl7OzeNT+D1y0axLbuAs15azJa9WuyvaqYJmfK4I4r4L62jiB+gvBjm3QVd+sKY21ssRqWUclmfU2DC/bDmU/j9NU4Z1JUvbj4RY+Dad5aTW1Tu6QhVK6QJmfK4J77dwJIt+3ls2hCS6iriB1j0FBzcYdVqeNeRuCmllCeNvQv6TYYF98POX+nXNZjXLhvBnpwSbvlwJRXaQFZVowmZ8qjKTvxXjO7B+XUV8QPs3QBLXoDEi6DXuLr3VUopT7LZYPqrENYdPr0C8jMZ2SOcR6cN4ZfN+3j8mw2ejlC1MpqQKY+pWsT/QH1F/A4HzL0DfAPh1EdbJkCllGqKgDC48H/W8m6fXAEVZVxwTDeuPKEnbyzezucr0jwdoWpFNCFTHnGgsIzr33WxiB9g9QewaylM+gcE6aLySqk2ousgOPtF2P0bLHgAgPunDOSE3l2494s1JO866OEAVWuhCZlqcRV2B7d8sJLsAheK+AEK98OCB6Hb8TD8spYJUimlmsvQ8+D4P8Mfr8Hsm/EpOcDLfxpBdIg/N7y3gqw8bYehNCFTLczhMDw2bz1Lt7pYxJ+XAV/cAKV5cOazVl2GUkq1NZP+ASfcBqs/ghdH0nnde7x+6XAKSyu4/r0V2jhWaUKmWs7KXQc5579LeWvJDq48oWfdRfxlhfDTE/DiCNj2E5z6mDX0r5RSbZGXD5z6T7hxMUQPha/vpP/cacycZGP17hzum7VGl1jq4NppZz7VmuzJKeaJbzcwe9UeooL9ePr8JKYPj6t5Z4cDUj6ylkXKz4BBU+GUhyE8oUVjVkopt4gaCFd8Bamfw/z7Of77C5jbcxqXJp/OzNgQrh2rr3UdlSZkym2Kyip49edtzFi0FWPg1pP7cOP43rV36N6+CObfD5kpEDsCznsLeoxu2aCVUsrdRKy6sr6nws9PMPi3/7K40/f869vz+Tnqb4zv347W+FQuk7Y8RDpq1CizfPlyT4ehqnE4DHNW7+HxbzaQmVfCmYkx3DN5APGdO9X8hH1bYOFDsPFrCO0GE/8OQ87VejGlVMeQtQ773Lvw2r2UNfQm/PyXiBt8gqejUm4gIiuMMaNqekxHyFSzWrnrIP/4ah2rducwNC6Ul/40nFE9w2veuegA/PwELHsDvP1h4kPWlUg+AS0btFJKeVLXQXhdPY/9v75PzIIHCP/0DMq2XIHvpL9Dp1peP1W7owmZahZ7cop58tsNfOmsE/vP+UmcMzwOm02O3rmiFP54HRY9aTVMHHEFTLgPgqJaPnCllGoNROhywmUsCx/DV/+7l8uT38VsmINMegSGXaozBh2AJmSqSYrL7Ly2aCuv/rwVh4FbTurNTceFE1iWDds2QkGWVZyf7/xYkAUHtkFhNvSeaHXd16snlVIKgGMG9GLDlCeYMns8rwd/SLc5t8KKd2DK0xA7zNPhKTfShEy5xuGA4gOQnwn5mZj8DNZv3sy6jZvoX76PeYGFdPfJw3vZXvit7Ojn+4VCcFcIjobeJ8PQC6DvKS3/dSilVCt32fE9WJ8xhrG/d2PWCbsYsfEZmHESHHMNnPwABHT2dIjKDTQhU4eV5MLOpZCZCgWZh5Iv8jOtkS1H+aFdBRgEdJdAvLrEEtA5FoITnUlXDAQ5PwZ3haBo8K2loF8ppdRRHj5rMFuyCvjTMi9mXfUDgza8BMteh7VfwqRHIOlPOo3ZzuhVlh1ZWZG1vtr2RdZtTzIYh/VYQGcrkQo+fMv17sIXm+18tc2BPTCKyyYdx/Rj+tRcJ6aUUqpJ9hWUMvWlJTiMYc4tY4gs2Ajz/gK7f4f4Y61pzJhET4epGqCuqyw1IetIKkohbfnhBCxtmTXqZfOGuFHQa5x1ixt5xIhWcZmdGYu28erPW7Ebw3Vje3HTSX0Iqq2fmFJKqWaxdk8u5/53KUNiQ/nfdcfhZxNY/aHVKqj4ABxznXVRVECYp0NVLmhVCZmIdAPeBboCBphhjHleRB4GrgOynbveZ4yZV9exNCGrh70CMlbB9p+tBGzX71BRDGKDmKTDCVi348Ev6KinG2P1E3vimw3syS1hylCrn1i3cJ1+VEqpljI3ZQ+3fJDMRcd049/nDEVEoPgg/PAYLJ8JnbrApH9C0kVW01nVarW2PmQVwF3GmJUiEgysEJGFzseeNcb8xwMxtQ8OB2Slwo5frARsxxIoy7ceixoMI6+EXmOhxwn1FoWu2p3DP75ay8pdOQyODeHZC4dxXEIX938NSimljnBmYiwbMvJ56cctDIwJ4YoTelqv4VP+A8MvtaYxv7wRVr4DJ90DXYdCoL5etzUtnpAZYzKADOf9fBFZD9SysKGqtGVvAXNW7+G7dVmUVtjx8bLhYxN6kM6wihQSy1czsDSFYEceAFk+3dgaNIHtXUeyO2QkZf5d8DGCz04b3mnZ+Hjtx8dL8PGy4e1lw9dL8LbZ8PG28dOGvcxKTicy2I8nz0vk3BHxeGmdmFJKecydk/qxITOPf8xdR9+oIE7oE2E9EDsMrl4Aq/4H3/0d3p1qbe/UBSL6Q2S/Iz+GxusoWivl0RoyEekJLAKGAHcCVwJ5wHKsUbSDNTzneuB6gO7du4/cuXNnS4XrHsZYhfQOOxj7ER/3HCxgQWoG363bw7asPLzEwTFxAYywbaZPUTL9i5PpbD8AQLYtitU+iSR7JbLCNoRME0653VBud1Bud1BhN5TZHVQ4DHZH3T9zX28b147pxZ8naJ2YUkq1Fvkl5ZzzylKyC0r56pYxR5ePlORapSn7NkL2Rti3yfpYknN4H59AiOhTLVnrD+EJ4OXTol9PR9SqasgOnVgkCPgZeMwYM0tEugL7sOrK/gnEGGOurusYraqGzBgoK7SKLIsOVPl4sNrnVT8ehNLcxp0vMOpwDVivcdC5p8vvehwOQ7nDQbndUGF3WInaoeTN0LmTD12C/BoXl1JKKbfZsa+QqS8vISbUn89vOoHA+t40GwOF+45O0vZtgrz0w/vZvK2kLKKfdYvsf/h+DTXGqnFaXUImIj7AXGC+MeaZGh7vCcw1xgyp6zhuS8jsFVYiVWMSVUuyVXwQ7DU0RK3kF2LN+XcKh4Dwwx/9QylxCJv3FrEuq5Bt+4upMDYiQjoxOK4zQ+LDCQ/yt/5YbF5g84HoodYfiw47K6VUh/PL5myuePMPJg3qyn8vGdn41kOl+bBv85FJWvZGazUVYz+8X0h8talP5/3ACP0/1ECtqqhfRASYCayvmoyJSIyzvgxgOpDarCcuLbB6txQfbNqolc3nyKSqS28IGHV0onXEx85HDQUbY1i0eR/v/7aTnzdmU2Z30KNLJ84eF8u5SbH06xrcrF++Ukqp9mFs30junzKIf85dx/Pfb+aOSf0adyC/YIgbYd2qqiizkrJ9lUnaJuv+ynegvOjwfgGdj576jOgHod20aW0jeKJA6ETgMmCNiKxybrsPuFhEhmFNWe4AbmjWs+amwfvnHLmt+qhVl941J1NVP/cNatI7gpJyO7NXpfPGL9vZvLeAyGA/Lhvdg7OTYkmMD7UuZ1ZKKaXqcPWJPVmfkcfz329mQHQwk4fGNN/BvX0haoB1q8rhgLy0wwla9kZrhG3D11D0bpXnB1SpU3OOpHn5Om8+9d/39rMuPuhgOk5j2PJiqxN9HaNW7rSvoJT3f9vJe7/uZH9hGYNiQrhuXC+mDI3F11vfSSillGqYknI7F834jY2Z+cz68wkMjAnxXDCF+2uuU8vd3fBjBcfCXeubP8ZWoNXVkDWXVlXUX4vNWfm8uWQ7n69Mp6zCwcQBUVwzthejE7roaJhSSqkm2ZtXwlkvLcbHy8acW8YQHujr6ZCOVFZo1arZy8Be7vxYz30vHxg83dORu0WrqiHrCIwxLNmynzcWb+Onjdn4eds4b2Q8V5/Yiz5RerWKUkqp5hEV4s+My0Zx/mu/8uf/reC9a47Dx6sVzbr4Blo3VS9NyJpRaYWdr1Zn8MYv29iQmU9EkB93TerHJcf3aH3vWpRSSrULSd3CeOLcodzx8WqufnsZx/UKp0eXQHp2CaRHRCdC/LW/WFugCVkzOFhYxv9+38k7v+4kO7+U/l2DefK8RM5OisXfx8vT4SmllGrnpg+PZ09OCe/+uoNfNu874rHwQF96dOlkJWjVPoZ18tHymVZCa8iaYFt2AW8u2c5nK9IoKXcwvl8k147txZg+EfoLrpRSyiOKyirYdaCIHfuK2Lm/kB37rY879xexJ7eYqv/2Q/y96RkR6BxR63TEx4ggX/1f1sy0hqwZGWP4bdsBZi7exnfr9+LrZWP68DiuGdtLe4cppZTyuE6+3gyIDmFA9NFXXZaU20k7aCVrO5xJ2o79hazencPXKXuourJeoK+XlaBFdKqWsAUSFezX+Ia0qkaakLmo3O7g65QM3li8jdT0PMIDffm/iX259PgeRAbrMkNKKaVaP38fL/pEBdMn6ugBhLIKB+k5xVaitu/wyNqGjHwWrM2iokq25u9jo0e4c+oz4sip0JjQALw0WWswTcjqkVtUzgd/7OKdpTvIzCuhd2Qg/z5nKNOHx2l9mFJKqXbD19tGr4hAekUEQv8jH6uwO8jILWFH5RSoM2Hbvq+QnzZlU1bhOHwcLxvdwgOcCVogY/tGML5fpI6o1UNryGqxc38hby3ZwSfLd1NUZufEPl24dmwC4/vqL5VSSilVyeEwZOaVHDEFurPKlGhxuZ2EiECuOrEn54yIr39B9HZMG8O6yBjD8p0HeeOXbSxYl4W3TTg7KY5rxvRiUKwHOyArpZRSbVC53cG8NRm8uWQHq3fnEOLvzUXHdufy0T2I79zJ0+G1OE3I6lFhdzAvNZOZv2xjdVouYZ18uPS4Hlw+ugdRIf7NEKlSSinVsa3cdZA3F2/nm9RMjDGcPiSaq0/sxcgenTvM1ZyakNUir6Scj//YzdtLd5CeU0yviECuHtOLc0fE0cm34w6pKqWUUu6yJ6eYd3/dyYd/7CK3uJzE+FCuPrEXZwyNafdrO2tCVs3uA0W8vXQHHy/bTUFpBcf1CufasQlMHBCl9WFKKaVUCygqq2DWynTeWrKdrdmFRAX7cfnoHlx8bHe6BLXP7gWakDmt3HWQmb9s55vUDGwiTEmM4doxCQyND3VjlEoppZSqjcNhWLQ5mzeX7GDRpmy6BPry670T2+VomTaGxUrGznllKcH+3lw3LoErRvckNizA02EppZRSHZrNJpzUP4qT+kexZW8+GzLz22UyVp8Ok5AN7xbGf85PYvKQ6A59ya1SSinVWtXWtLYj6DCZiYhw3sh4T4ehlFJKKXWUjjcmqJRSSinVymhCppRSSinlYZqQKaWUUkp5mCZkSimllFIepgmZUkoppZSHtbqETEROF5GNIrJFRO7xdDxKKaWUUu7WqhIyEfECXgYmA4OAi0VkkGejUkoppZRyr1aVkAHHAluMMduMMWXAR8BUD8eklFJKKeVWrS0hiwN2V/k8zbntEBG5XkSWi8jy7OzsFg1OKaWUUsod2lynfmPMDGAGgIjki8hGD4fUFBHAPk8H4aK2FGt1bTX2thp3pbYaf1uNG9p27NB242+rcUPbjb2txt2jtgdaW0KWDnSr8nm8c1ttNta2anpbICLL20r8bSnW6tpq7G017kptNf62Gje07dih7cbfVuOGtht7W427Lq1tynIZ0FdEeomIL3ARMMfDMSmllFJKuVWrGiEzxlSIyC3AfMALeNMYs9bDYSmllFJKuVWrSsgAjDHzgHku7j7DnbG0gLYUf1uKtbq2GntbjbtSW42/rcYNbTt2aLvxt9W4oe3G3lbjrpUYYzwdg1JKKaVUh9baasiUUkoppTocTciUUkoppTysTSRkIlLg6RgaQ0TsIrKqyq1nHfv+JCIeuYRXRIyIvF/lc28RyRaRuZ6Ip7FEZJrzaxng6Vjq046+523yb7NSffF78u+yNm3p97w6EblfRNaKSIrzNfE4T8fkKhGJF5HZIrJZRLaKyPPObgC17X+7iHRqyRhricOIyNNVPv+LiDzswZBcUuX/51oRWS0id4lIm8hZGqtdf3GtQLExZliV2w5PB1SLQmCIiAQ4P59E3f3fjiIireECkYuBxc6PLnOuodrSmvw9Vx1Wo37PPU1ERgNnAiOMMYnAKRy5MkurJSICzAK+NMb0BfoBQcBjdTztdsDjCRlQCpwjIhGeDqSBKv9/DsZ6fZwM/N3DMblVm0nIRCRIRL4XkZUiskZEpjq39xSR9SLyujOTXlDln1yrIyIjReRnEVkhIvNFJKbKw5c53xGkisixLRzaPGCK8/7FwIeVD4jIsSLyq4gki8hSEenv3H6liMwRkR+A71s43iOISBAwBrgGq38dInKSiCwSka9FZKOIvFr5DktECkTkaRFZDYz2UNiN+Z4vEpFhVfZbLCJJLRl0dc7v89wqn78kIlc67+8QkUeq/N22ulGduuJvber4Pa/t+3+GiGxwvt684OER2BhgnzGmFMAYs88Ys6e210Tn6OTzHnxNrOpkoMQY85YzdjtwB3C1iASKyH+cMaaIyK0ichsQC/woIj96MG6ACqwrEu+o/oDz/+cPzri/F5HuIhIqIjurvFYGishuEfFp6cArGWP2AtcDt4jFS0SeEpFlzthvqPI1/c35WrNaRB73VMyN0WYSMqAEmG6MGQFMAJ52vmsB6Au87Mykc4BzPRPiUQLk8HTlF85f6BeB84wxI4E3OfIdVidjzDDgz87HWtJHwEUi4g8kAr9XeWwDMNYYMxx4CPhXlcdGYH0941ss0ppNBb41xmwC9ovISOf2Y4FbgUFAb+Ac5/ZA4HdjTJIxZnGLR2tpzPd8JnAlgIj0A/yNMatbLOLG2ef8u/0v8BdPB9PG1fZ7fhTn79VrwGTn601kC8VYmwVANxHZJCKviMj4Vv6aWNVgYEXVDcaYPGAXcC3QExjmHPn7nzHmBWAPMMEYM6GFY63Jy8AlIhJabfuLwDuVcQMvGGNygVVA5Wv6mcB8Y0x5SwVbE2PMNqz+pFFYb0hyjTHHAMcA14nVUH4y1t/IccaYJOBJjwXcCK1hmslVAvxLRMYBDqxFx7s6H9tujFnlvL8C64+jNSh2vpgAICJDgCHAQmcu6QVkVNn/QwBjzCIRCRGRMGNMTksEaoxJEavG7WKO7gMXCrwjIn0BA1R9p7TQGHOgJWKsx8XA8877Hzk/nwv84fxDRkQ+xBpd+AywA597IM5DGvk9/xR4UETuBq4G3m6ZaJtklvPjCg4nxKpxavs9r8kAYJsxZrvz8w+xRhk8whhT4Ewgx2K9qf4YeJRW+prYACcBrxhjKgBayevhEYwxeSLyLnAbUFzlodEc/pt8j8MJzMfAhcCPWCOxr7RQqK46FUgUkfOcn4diDcycArxljCmC1vmzqEtbSsguwXqHN9IYUy4iOwB/52OlVfazA611ylKAtcaY2qbIqjeFa+kmcXOA/2C9wHSpsv2fwI/GmOnOBOKnKo8VtlRwtRGRcKwphaEiYrBe1A3wNbV/T0uc0w6e1qDvuTGmSEQWYr0LvACodYSkBVVw5Gi7f7XHK/8+7bTO15z64m8V6vg9n00biB8OTfX9BPwkImuAm2ndr4mV1gHnVd0gIiFAd2CHJwJqhOeAlcBbLuw7B2sAJBzrNeYHN8blEhFJwHoN2Yv1v/RWY8z8avuc5onYmktbmrIMBfY6k7EJ1LFieiu2EYgUq7gVEfERkcFVHr/QuX0M1nBsbgvH9ybwiDFmTbXtoRwuOL+yRSNyzXnAe8aYHsaYnsaYbsB2rHfixzqHsm1Y319PTU/WpjHf8zeAF4BlxpiD7g3PJTuBQSLiJyJhwEQPx9NQbSX+2n7PbdQc/0YgQQ5f3X1hSwdclYj0d474VhoGrKd1vyZW+h7oJCKXO+PxAp7GGqGeD9wgzgubnEkMQD4Q3PKh1sw5WvQJ1nRfpaU4axGxBj1+ce5bgLW29PPAXE+/eRWRSOBV4CVjdbOfD9xUWdcmIv1EJBBYCFwlzqtbq/ws2oTW+G71CM5f8lKs+e2vnO+qlmPV2LQpxpgy5xDrC865fG+sdy2V63WWiEgy1vTU1R6ILw3rH311T2JNnz2ANerU2lwMPFFt2+fATVgvKi8BfbCG379o2dDq1pjvuTFmhYjk4do7Xbep/Ns0xuwWkU+AVKwEIdmTcbmqDcZf2+/5RVj/aI+I3xhTLCJ/Br4VkUKsvwVPCgJedCaNFcAWrCnUGbTS18RKxhgjItOBV0TkQawkeB5wH9aoTT8gRUTKgdexXnNmYH3v97SSOjKwkshbqnx+K/CWswQiG7iqymMfY5VInNRi0R0pQERWYf3sK7CmVJ9xPvYGVmnSSmcteTYwzRjzrVgXPS0XkTIO/4zahFa/dJJYV5C9bozx5BU2qg0SkZOAvxhjzvRwKM1KRGKxpn0GGGMcHoyjTf9ttvX4XSEiQc7aLcEq7N5sjHnW03G5QkR+wvr7Xe7pWJRqCa16ylJEbsQq6nzA07Eo1Ro4p0x+B+73cDLWpv8223r8DXCdc5RhLdY0+GueDUcpVZtWP0KmlFJKKdXeteoRMqWUUkqpjkATMqWUUkopD9OETCmllFLKwzQhU0oppZTyME3IlFJKKaU87P8Bef1yAGjuj/YAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 720x720 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Call the plot functions with the years to be plotted\n",
"\n",
"oensingen.plot_values(2010, 2011)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "58787137-5c82-4f17-9abc-4f46846d77e4",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAJOCAYAAAA3Yzp+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABFMElEQVR4nO3deZhkZX33//fHUURZxoUJUREGECSiiDoBeUwiKC4EFBcSISYRN4xxiRrzBH5uaDaiMTGI2wgoolGMYpgIigQBn7gyo4iAooQlgiSCKCAgMvj9/VGnoWi6qmtq6erT835dV11V5z6nTn26p6vmW/d97nNSVUiSJKk97jHtAJIkSdowFnCSJEktYwEnSZLUMhZwkiRJLWMBJ0mS1DIWcJIkSS1jASdJktQyFnCS1Ehy7yTHJbkiyY1JzkuyX9f6Jyf5XpKbk5yVZLuudb+f5CvNurPn2PfuSdY169cl2X1hfipJS5EFnCTd6Z7AD4EnAsuBNwKfTLIyyVbAycCbgAcAa4GTup57HfAu4KjZO02yCXAK8FHg/sAJwClNuyRtsHglBknqLcn5wFuBBwKHVtX/ado3A64FHlNV3+va/iXAH1bV3l1tTwU+BGxTzYdukv8GDquqzy/UzyJp6bAHTpJ6SLI1sDNwIbAr8O2ZdVV1E/BfTft8dgXOr7t+Yz5/wOdK0t1YwEnSHJLcC/gYcELTw7Y5cP2sza4Hthhgd6M8V5LuxgJOkmZJcg/gROCXwCub5p8DW87adEvgxgF2OcpzJeluLOAkqUuSAMcBWwPPrarbmlUXAo/u2m4zYMemfT4XArs1+56x24DPlaS7sYCTpLt6H/AbwDOq6pau9s8Aj0zy3CSbAm+mc1zb9wCSLGva7wncI8mmzTAswNnA7cCrm1OVzPTqfXEBfh5JS5CzUCWp0ZzX7XLgVmB916qXVdXHkuwLHANsB3ydzqzUy5vnHkpnpmm3E6rq0Gb9Y4BjgUcA3wVeXFXfmtTPImlps4CTJElqGYdQJUmSWsYCTpIkqWUs4CRJklrGAk6SJKll7jntAAtpq622qpUrV047hiRJ0rzWrVt3bVWtmGvdRlXArVy5krVr1047hiRJ0rySXNFrnUOokiRJLWMBJ0mS1DIWcJIkSS1jASdJktQyFnCSJEktYwEnSZLUMhZwkiRJLWMBJ0mS1DIWcJIkSS2zUV2JQZIkjd/Kw0/doO0vP2r/CSXZeNgDJ0mS1DIWcJIkSS1jASdJktQyi7KAS3J8kh8nuaDH+r2TXJ/kvOb25oXOKEmSNC2LdRLDh4FjgI/02eb/VdUBCxNHkiRp8ViUPXBV9SXgumnnkCRJWowWZQE3oL2SfDvJ55Ls2mujJIclWZtk7TXXXLOQ+SRJkiairQXcN4HtqurRwLuBf+u1YVWtrqpVVbVqxYoVC5VPkiRpYlpZwFXVDVX18+bxacC9kmw15ViSJEkLopUFXJJfT5Lm8R50fo6fTDeVJEnSwliUs1CTfBzYG9gqyZXAW4B7AVTV+4GDgJcnWQ/cAhxcVTWluJIkSQtqURZwVXXIPOuPoXOaEUmSpI1OK4dQJUmSNmYWcJIkSS1jASdJktQyFnCSJEktM/YCLskm496nJEmS7jRSAZfk7CQru5b3AM4dNZQkSZJ6G/U0In8HfD7J0cBDgP2AF46cSpIkST2NVMBV1elJ/gQ4A7gWeExV/c9YkkmSJGlOow6hvonOxeR/BzgSODvJ/mPIJUmSpB5GHUJ9ILBHVd0CfDXJ54FjgVNHTiZJkqQ5jTqE+ppZy1cATxlln5IkSepvpAIuyVnA3S4iX1VPGmW/kiRJ6m3UIdTXdz3eFHgusH7EfUoTs/LwDRvdv/woD+mUJC0+ow6hrpvV9OUk3xhln5IkSepv1CHUB3Qt3gN4HLB8pESSJEnqa9Qh1HV0joELnaHTy4AXjxpKkiRJvY06hLr9uIJIkiRpMEMVcEme0299VZ08XBxJkiTNZ9geuGf0WVeABZwkSdKEDFXAVZUXrJckSZqSoa6FmuTDXY9fMLY0kiRJmtewF7N/dNfjPxtHEEmSJA1m2ALubpfPkiRJ0sIYdhLDNkmOpnP+t5nHd6iqV4+cTJIkSXMatoD7i67Ha8cRRJIkSYMZdhbqCeMOIkmSpMGMeiktbURWHn7qBm1/+VH7TyiJJEkbt2EnMUiSJGlKRirgkjxhkDZJkiSNz6g9cO8esE2SJEljMuzF7PcC/g+wIsnrulZtCSwbRzBJkiTNbdhJDJsAmzfP36Kr/QbgoFFDSZIkqbdhTyNyDnBOkg9X1RVjziRJkqQ+Rj2NyM1J3gHsCmw601hVTxpxv5IkSeph1EkMHwO+B2wPvBW4HDh3xH1KkiSpj1ELuAdW1XHAbVV1TlW9CLD3TZIkaYJGHUK9rbm/Osn+wI+AB4y4T0mSJPUxagH310mWA39O5/xvWwKvHTmVJEmSehqpgKuqzzYPrwf2GT2OJEmS5jPqpbR2TnJmkgua5d2SvHHUUEmOT/Ljmf3OsT5Jjk5ySZLzkzx21NeUJElqi1EnMXwQOILmWLiqOh84eNRQwIeBp/dZvx+wU3M7DHjfGF5TkiSpFUYt4O5bVd+Y1bZ+xH1SVV8CruuzyYHAR6rja8D9kjxo1NeVJElqg1ELuGuT7AgUQJKDgKtHTjW/hwA/7Fq+smm7mySHJVmbZO0111yzANEkSZIma9RZqK8AVgO7JLkKuAz4w5FTjVFVraaTkVWrVtWU40iSJI1s1FmolwL7JtkMuEdV3TieWPO6Cnho1/I2TZskSdKSN1QBl+R1PdoBqKp/HCHTINYAr0zyCWBP4PqqWoihW0mSpKkbtgdui67HLwM+MIYsd0jycWBvYKskVwJvAe4FUFXvB04Dfhe4BLgZeOE4X1+SJGkxG6qAq6q3zjxO8qzu5XGoqkPmWV90jr+TJEna6Iw6CxWaGaiSJElaGOMo4CRJkrSAhp3E8B3u7Hl7WJLzZ1bRGeHcbRzhJEmSdHfDTmI4YKwpJEmSNLBhJzFcMe4gkiRJGozHwEmSJLWMBZwkSVLLjFTAJfmzQdokSZI0PqP2wL1gjrZDR9ynJEmS+hj2NCKHAH8AbJ9kTdeqLYDrxhFMkiRJcxv2NCJfAa4GtgLe2dV+I3D+nM+QJEnSWIxyGpErgL3GG0eSJEnzGXUSw3OS/CDJ9UluSHJjkhvGFU6SJEl3N+wQ6oy3A8+oqu+OI4wkSZLmN+os1P+1eJMkSVpYo/bArU1yEvBvwK0zjVV18oj7lSRJUg+jFnBbAjcDT+1qK8ACTpIkaUJGKuCq6oXjCiJJkqTBjDoLdeckZya5oFneLckbxxNNkiRJcxl1EsMHgSOA2wCq6nzg4FFDSZIkqbdRC7j7VtU3ZrWtH3GfkiRJ6mPUAu7aJDvSmbhAkoPoXGJLkiRJEzLqLNRXAKuBXZJcBVwGPH/kVJIkaWpWHn7qtCNoHqMWcFVV+ybZDLhHVd2YZPtxBJPm4weMJGljNeoQ6qcBquqmqrqxafvUiPuUJElSH0P1wCXZBdgVWJ7kOV2rtgQ2HUcwSZIkzW3YIdSHAwcA9wOe0dV+I/DSETNJkiSpj6EKuKo6BTglyV5V9dUxZ5IkSVIfo05i+FaSV9AZTr1j6LSqXjTifiVJktTDqJMYTgR+HXgacA6wDZ1hVEmSJE3IqAXcw6rqTcBNVXUCsD+w5+ixJEmS1MuoBdxtzf3PkjwSWA782oj7lCRJUh+jHgO3Osn9gTcCa4DNgTeNnEqSJI2FJz1fmkYq4Krq2Obhl4AdAJI8d9RQ0mKxoR98lx+1/4SSSJJ0p1GHUOfyTxPYpyRJkhqjDqHOJRPYp6SNmD2hknRXk+iBqwnsU5IkSY1hr4X6HeYu1AJsPVIiSZIk9TXsEOoBY00hSZKkgQ01hFpVV/S7jSNYkqcnuTjJJUkOn2P9oUmuSXJec3vJOF5XkiRpsZvEJIaRJVkGvAd4CnAlcG6SNVV10axNT6qqVy54QEmasGHO3eXkDWnjMYlJDOOwB3BJVV1aVb8EPgEcOOVMkiRJi8JiLeAeAvywa/nKpm225yY5P8mnkjx0rh0lOSzJ2iRrr7nmmklklSRJWlAjFXBJnpDkjCTfT3JpksuSXDqucPP4d2BlVe0GnAGcMNdGVbW6qlZV1aoVK1YsUDRJkqTJGfUYuOOA1wLrgNtHj3OHq4DuHrVtmrY7VNVPuhaPBd4+xteXJElatEYt4K6vqs+NJcldnQvslGR7OoXbwcAfdG+Q5EFVdXWz+EzguxPIIUmStOiMWsCdleQdwMnArTONVfXNUXZaVeuTvBI4HVgGHF9VFyZ5G7C2qtYAr07yTGA9cB1w6CivKUmS1BajFnB7NverutoKeNKI+6WqTgNOm9X25q7HRwBHjPo6kiRJbTNSAVdV+4wriCRJkgYz7LVQ/7CqPprkdXOtr6p/HC2WJEmSehm2B26z5n6LcQWRJEnSYIYq4KrqA839W8cbR5IkSfNZrFdikCRJUg8WcJIkSS1jASdJktQyo14LdeskxyX5XLP8iCQvHk80SZIkzWXUHrgP07lawoOb5e8Drxlxn5IkSepj1AJuq6r6JPAr6FwCi/Fe1F6SJEmzjFrA3ZTkgXQun0WSxwPXj5xKkiRJPY16LdTXAWuAHZN8GVgBHDRyKkmSJPU06rVQv5nkicDDgQAXV9VtY0kmSYvYysNP3aDtLz9q/wklkbQxGqmAS/IK4GNVdWGzfP8kh1TVe8eSTpIWwIYWY5I0baMeA/fSqvrZzEJV/RR46Yj7lCRJUh+jFnDLkmRmIckyYJMR9ylJkqQ+Rp3E8HngpCQfaJZf1rRJkiRpQkYt4P6STtH28mb5DODYEfcpSZKkPkadhfor4H3NTZIkSQtg1FmoTwCOBLZr9hWgqmqH0aNJkiRpLqMOoR4HvBZYh5fQkiRJWhCjFnDXV9XnxpJEkiRJAxm1gDsryTuAk4FbZxqr6psj7leSJEk9jFrA7dncr+pqK+BJI+5XkiRJPYw6C3WfcQWRJEnSYEa6EkOSrZMcl+RzzfIjkrx4PNEkSZI0l1EvpfVh4HTgwc3y94HXjLhPSZIk9THqMXBbVdUnkxwBUFXrk3g6EUlaglYefurEX+Pyo/af+GtIS8GoPXA3JXkgnYkLJHk8cP3IqSRJktTTqD1wrwPWADsm+TKwAjho5FSSpIlbiB41SZMxdAGXZBnwxOb2cDqX0bq4qm4bUzZJ0kZmQ4tKh1y1sRp6CLWqbgcOqar1VXVhVV1g8SZJkjR5ow6hfjnJMcBJwE0zjV6JQZLuyuFKSeM0agG3e3P/tq42r8QgSZI0QV6JQZIkqWW8EoMkSVLLjDqE+mHgQ8AbmuXv0zke7rgR9yu1kjPoJEkLwSsxSJLUwzCTT/xipoXglRgkSZJaZtQCbvaVGD4CvGrkVECSpye5OMklSQ6fY/29k5zUrP96kpXjeF1JkqTFbqgCLsnvNQ9/SudKDP8HeBmwa1WdP2qo5ioP7wH2Ax4BHJLkEbM2ezHw06p6GPBPwN+P+rqSJEltMGwP3BHN/acndCWGPYBLqurSqvol8AngwFnbHAic0Dz+FPDkJBnT60uSJC1aw05iuC7JF4AdkqyZvbKqnjlaLB4C/LBr+Upgz17bNJMnrgceCFzbvVGSw4DDALbddtsRYy0hRy7f4KdcftSED2/cwEwTz7MQhvh34MhF9nMP8zNsoA3+t94Y/5Zg4/y5J/z3N9TvaNLviQ38DHBSxdI0bAH3u8BjgROBd44vzvhV1WpgNcCqVatqynEkSZJGNmwBd1xV/VGSD1bVOWNN1HEV8NCu5W2atrm2uTLJPYHlwE8mkEWSJGlRGfYYuMcleTDw/CT3T/KA7tsYcp0L7JRk+ySbAAfTme3abQ3wgubxQcAXq8oeNkmStOQN2wP3fuBMYAdgHdA9eaCa9qE1x7S9EjgdWAYcX1UXJnkbsLaq1tC52sOJSS4BrqNT5EmSJC15QxVwVXU0cHSS91XVy8ecaeY1TgNOm9X25q7HvwB+b/bzJEmSlrqhCrgkW1bVDcAb5hoyrarrRk4mSZKkOQ07hPovwAF0hk9nG3kIVVKLDHNakwU49YgkLWXDDqEe0NxvP944kiRJms+wPXA0p+7YD9ilaboIOL2q1o8jmKQlbLGdjFiSWmbYa6E+BLgQ+HPgwXSuivB/gQub04tIkiRpQobtgfsb4H1V9a7uxiSvBv6OO8/PJkmSpDEbtoB7fFUdOruxqo5OcvFokSRJktTPsFdiuKXPupuH3KckSZIGMGwP3PIkz5mjPcCWI+SRJEnSPIYt4M4BntFj3ZeG3KckSZIGMOx54F447iCSJEkazLDHwEmSJGlKLOAkSZJaZugrMUiSNHUbelUPr8OrJWKkAi7JfelcjWHbqnppkp2Ah1fVZ8eSTpKkcfIybloiRh1C/RBwK7BXs3wV8Ncj7lOSJEl9jFrA7VhVbwduA6iqm+mcC06SJEkTMmoB98sk9wEKIMmOdHrkJEmSNCGjTmI4Evg88NAkHwOeABw64j4lSWovJ1ZoAYxUwFXVF5KsAx5PZ+j0z6rq2rEkkyRtGA/QlzYao85C/XfgX4A1VXXTeCJJkiSpn1GPgfsH4LeBi5J8KslBSTYdQy5JkiT1MOoQ6jnAOUmWAU8CXgocD2w5hmySJEmaw8hXYmhmoT4DeB7wWOCEUfcpSZKk3kY9Bu6TwB50ZqIeA5xTVb8aRzBJkiTNbdQeuOOAQ6rq9nGEkSRJ0vyGKuCSPKmqvghsBhyY3PXiC1V18hiySZIkaQ7D9sA9EfginWPfZivAAk6SJGlChirgquotzcO3VdVl3euSbD9yKkmSJPU06nngPj1H26dG3KckSZL6GPYYuF2AXYHlSZ7TtWpLwBP5SpIkTdCwx8A9HDgAuB93PQ7uRjon85UkSdKEDHsM3CnAKUn2qqqvjjmTJEmS+hj1PHDfSvIKOsOpdwydVtWLRtyvNkZHXj/tBJIktcKokxhOBH4deBpwDrANnWFUSZIkTcioBdzDqupNwE1VdQKwP7Dn6LEkSZLUy6gF3G3N/c+SPBJYDvzaiPuUJElSH6MeA7c6yf2BNwFrgM2BN4+cSpIkST2NVMBV1bHNw3OAHUaPI0mSpPkMeyLf1/VbX1X/OFwcSPIA4CRgJXA58PtV9dM5trsd+E6z+N9V9cxhX1OSJKlNhj0Gbot5bqM4HDizqnYCzmyW53JLVe3e3CzeJEnSRmPYE/m+ddxBuhwI7N08PgE4G/jLCb6eJElSq4w0CzXJzknOTHJBs7xbkjeOmGnrqrq6efw/wNY9tts0ydokX0vyrD4ZD2u2W3vNNdeMGE2SJGn6Rj2NyAeBI2hOJ1JV5wMHz/ekJP+R5II5bgd2b1dVBVSP3WxXVauAPwDelWTHuTaqqtVVtaqqVq1YsWIDfjRJkqTFadTTiNy3qr6RpLtt/XxPqqp9e61L8r9JHlRVVyd5EPDjHvu4qrm/NMnZwGOA/9qQ8JIkSW00ag/ctU3PVwEkOQi4uv9T5rUGeEHz+AXAKbM3SHL/JPduHm8FPAG4aMTXlSRJaoVRe+BeAawGdklyFXAZ8PwR93kU8MkkLwauAH4fIMkq4E+q6iXAbwAfSPIrOkXoUVVlASdJkjYKo57I91Jg3ySb0SmkbqZzDNwVI+zzJ8CT52hfC7ykefwV4FHDvoaAI6+fdgJJkjSkoYZQk2yZ5IgkxyR5Cp3C7QXAJTQ9ZpIkSZqMYXvgTgR+CnwVeCnwBiDAs6vqvPFEkzYC9oRKkoYwbAG3Q1U9CiDJsXQmLmxbVb8YWzJJkjYGfpHTEIadhXrbzIOquh240uJNkiRpYQzbA/foJDc0jwPcp1kOnfPvbjmWdJIkSbqbYa+FumzcQSRJkjSYUU/kK0mSpAVmASdJktQyFnCSJEktYwEnSZLUMhZwkiRJLWMBJ0mS1DIWcJIkSS1jASdJktQyFnCSJEktYwEnSZLUMhZwkiRJLWMBJ0mS1DIWcJIkSS1jASdJktQy95x2AEkauyOvn3YCSZooe+AkSZJaxgJOkiSpZSzgJEmSWsYCTpIkqWUs4CRJklrGAk6SJKllLOAkSZJaxgJOkiSpZSzgJEmSWsYCTpIkqWVSVdPOsGCS3AhcPO0cQ9oKuHbaIQbUpqxzaWv+tuaG9mZva+4Zbc7f1uxtzT2jrfnbmnu7qlox14qN7VqoF1fVqmmHGEaStW3J3qasc2lr/rbmhvZmb2vuGW3O39bsbc09o63525q7H4dQJUmSWsYCTpIkqWU2tgJu9bQDjKBN2duUdS5tzd/W3NDe7G3NPaPN+duava25Z7Q1f1tz97RRTWKQJElaCja2HjhJkqTWs4CTJElqmSVZwCX5+bQzDCPJ7UnO67qt7LPt2UmmMiU6SSX5aNfyPZNck+Sz08gzjCTPan6OXaadZT5L4fc9o63vzRnz5Z/m+3Iubfo7n0uSNyS5MMn5zWfintPONIgk2yQ5JckPkvxXkn9Oskmf7V+T5L4LmbFHjkryzq7l1yc5coqRBtL1f+eFSb6d5M+TLMn6ptuS/wFb5paq2r3rdvm0A/VwE/DIJPdplp8CXLUhO0gy7XMQHgL8Z3M/sCTLJhOnr5F/39poDfV3vhgk2Qs4AHhsVe0G7Av8cLqp5pckwMnAv1XVTsDOwObA3/R52muAqRdwwK3Ac5JsNe0gG2jm/85d6Xw+7ge8ZcqZJm7JFnBJNk9yZpJvJvlOkgOb9pVJvpvkg021/oWu/xgXnSSPS3JOknVJTk/yoK7Vf9R867ggyR4LHO00YP/m8SHAx2dWJNkjyVeTfCvJV5I8vGk/NMmaJF8EzlzgvHdIsjnwW8CLgYObtr2TfCnJqUkuTvL+mW9wSX6e5J1Jvg3sNaXYw/y+v5Rk967t/jPJoxcy9Fya3/Vnu5aPSXJo8/jyJG/tet8uup6jfvkXkz5/571+97+b5HvNZ83Ri6CH90HAtVV1K0BVXVtVP+r1mdj0fv7zFD8TZzwJ+EVVfajJfTvwWuBFSTZL8g9NvvOTvCrJq4EHA2clOWtKmWespzNb87WzVzT/d36xyX1mkm2TLE9yRddn5WZJfpjkXgsdfEZV/Rg4DHhlOpYleUeSc5vsL+v6mf6y+Zz5dpKjppV5WEu2gAN+ATy7qh4L7AO8s/lmBLAT8J6mWv8Z8NzpRLyb++TO4dPPNG+CdwMHVdXjgOO567e4+1bV7sCfNusW0ieAg5NsCuwGfL1r3feA366qxwBvBv62a91j6fw8T1ywpHd3IPD5qvo+8JMkj2va9wBeBTwC2BF4TtO+GfD1qnp0Vf3ngqftGOb3fRxwKECSnYFNq+rbC5Z4eNc279v3Aa+fdpgW6/V3fjfN39UHgP2az5o5L92zwL4APDTJ95O8N8kTF/ln4oxdgXXdDVV1A/DfwEuAlcDuTa/ix6rqaOBHwD5Vtc8CZ53Le4DnJ1k+q/3dwAkzuYGjq+p64Dxg5vP8AOD0qrptocLOpaouBZYBv0bnC8z1VfWbwG8CL02yfZL96LxH9qyqRwNvn1rgIU17GGuSAvxtkt8BfgU8BNi6WXdZVZ3XPF5H5w21GNzSfPgAkOSRwCOBM5racxlwddf2Hweoqi8l2TLJ/arqZwsRtKrOT+cYvUPo9A51Ww6ckGQnoIDub2NnVNV1C5Gxj0OAf24ef6JZ/izwjeaNT5KP0+m9+BRwO/DpKeS8w5C/738F3pTkL4AXAR9emLQjO7m5X8edRbQ2XK+/87nsAlxaVZc1yx+n04sxNVX186bo/G06X8JPAv6aRfqZOKC9gfdW1XqARfBZeDdVdUOSjwCvBm7pWrUXd74fT+TOguck4HnAWXR6et+7QFEH9VRgtyQHNcvL6XTi7At8qKpuhsX5bzGfpVzAPZ/Ot8jHVdVtSS4HNm3W3dq13e3AYh1CDXBhVfUatpt9Er+FPqnfGuAf6HwoPbCr/a+As6rq2U3RcXbXupsWKtxckjyAzhDHo5IUnf8ACjiV3r/PXzTDINO2Qb/vqro5yRl0vmX+PtCzB2aBreeuvf+bzlo/8/68ncX5GTVf/qnr83d+Cos8e7fmfXc2cHaS7wCvYHF/JgJcBBzU3ZBkS2Bb4PIp5BnGu4BvAh8aYNs1dDpLHkDnM+aLE8w1kCQ70Pn8+DGd/0dfVVWnz9rmadPINk5LeQh1OfDjpnjbB9hu2oGGcDGwIp2DeUlyryS7dq1/XtP+W3S6iK9f4HzHA2+tqu/Mal/OnQfZH7qgieZ3EHBiVW1XVSur6qHAZXS+5e/RdK3fg87vdlrDpb0M8/s+FjgaOLeqfjrZeAO7AnhEknsnuR/w5Cnn2VBtyN/r7/wezJ39YmCH3Dnz/XkLHXi2JA9vepVn7A58l8X9mQid43vvm+SPmyzLgHfS6QE/HXhZmklcTdEDcCOwxcJHnVvTG/VJOsOPM75CcywlnQ6S/9ds+3PgXDq9vZ+d9pfdJCuA9wPHVOdKBacDL585Li/Jzkk2A84AXphm9m/Xv0VrLMZvtyNp3hi30hmj//fmW9taOscJtUpV/bLp9j26OR7hnnS+GV3YbPKLJN+iM2T2oinku5JOcTDb2+kM6b2RTs/WYnII8Pez2j4NvJzOh9AxwMPoDAd8ZmGj9TfM77uq1iW5gcG+SU/UzHuzqn6Y5JPABXSKim9NN9lgWpa/19/5wXT+Y75L9qq6JcmfAp9PchOd98K0bQ68uyk01wOX0BnWXc0i/UwEqKpK8mzgvUneRKdoPg34/+j0Cu0MnJ/kNuCDdD5zVtP53f9okRwHB52i85Vdy68CPtQcknEN8MKudSfROWRj7wVLd1f3SXIenX/39XSGeP+xWXcsncOkvtkcB38N8Kyq+nw6k7zWJvkld/4btcaSu5RWOrPsPlhV05qBpBZKsjfw+qo6YMpRxirJg+kMQe1SVb+acpZWvzfbnn8+STZvjjsLnQPZf1BV/zTtXINKcjad9/DaaWeRFsKSGkJN8id0DmJ947SzSNPWDOF8HXjDIijeWv3ebHv+Ab206cW4kM6w/AemG0dSP0uuB06SJGmpW1I9cJIkSRsDCzhJkqSWsYCTJElqGQs4SZKklrGAkyRJahkLOEmSpJaxgJMkSWoZCzhJkqSWsYCTJElqGQs4SZKklrGAkyRJahkLOEmSpJaxgJMkSWoZCzhJkqSWsYCTJElqGQs4SZKklrGAkyRJahkLOElqJLl3kuOSXJHkxiTnJdmva/2Tk3wvyc1JzkqyXde630/ylWbd2XPse3WSi5P8KsmhC/MTSVqqLOAk6U73BH4IPBFYDrwR+GSSlUm2Ak4G3gQ8AFgLnNT13OuAdwFH9dj3t4E/Bb45keSSNir3nHYASVosquom4Miups8muQx4HPBA4MKq+leAJEcC1ybZpaq+V1X/0bS/pMe+39Os/8XkfgJJGwt74CSphyRbAzsDFwK70ulFA+4o9v6raZekBWUBJ0lzSHIv4GPACVX1PWBz4PpZm10PbLHQ2STJAk6SZklyD+BE4JfAK5vmnwNbztp0S+DGBYwmSYAFnCTdRZIAxwFbA8+tqtuaVRcCj+7abjNgx6ZdkhaUBZwk3dX7gN8AnlFVt3S1fwZ4ZJLnJtkUeDNwfjO8SpJlTfs9gXsk2bQZhqVZv0mzPsC9mvV+BksaSqpq2hkkaVFozut2OXArsL5r1cuq6mNJ9gWOAbYDvg4cWlWXN889FPjQrF2eUFWHNuvPpnN6km77VNXZ4/wZJG0cLOAkSZJaxu57SZKklrGAkyRJahkLOEmSpJaxgJMkSWqZjepaqFtttVWtXLly2jEkSZLmtW7dumurasVc6zaqAm7lypWsXbt22jEkSZLmleSKXuscQpUkSWoZCzhJkqSWsYCTJElqGQs4SZKklrGAkyRJahkLOEmSpJaxgJMkSWoZCzhJkqSWsYCTJElqmY3qSgySNJeVh5+6wc+5/Kj9J5BEkgZjD5wkSVLLWMBJkiS1jAWcJElSy1jASZIktYwFnCRJUstYwEmSJLXMVAu4JMcn+XGSC3qsf36S85N8J8lXkjy6a93lTft5SdYuXGpJkqTpmnYP3IeBp/dZfxnwxKp6FPBXwOpZ6/epqt2ratWE8kmSJC06Uz2Rb1V9KcnKPuu/0rX4NWCbiYeSJEla5KbdA7chXgx8rmu5gC8kWZfksF5PSnJYkrVJ1l5zzTUTDylJkjRprbiUVpJ96BRwv9XV/FtVdVWSXwPOSPK9qvrS7OdW1WqaoddVq1bVggSWJEmaoEXfA5dkN+BY4MCq+slMe1Vd1dz/GPgMsMd0EkqSJC2sRV3AJdkWOBn4o6r6flf7Zkm2mHkMPBWYcyarJEnSUjPVIdQkHwf2BrZKciXwFuBeAFX1fuDNwAOB9yYBWN/MON0a+EzTdk/gX6rq8wv+A0iSJE3BtGehHjLP+pcAL5mj/VLg0Xd/hiRJ0tK3qIdQJUmSdHdDFXBJNhl3EEmSJA1m3gIuydndJ9tNsgdw7iRDSZIkqbdBjoH7O+DzSY4GHgLsB7xwoqkkSZLU07wFXFWdnuRPgDOAa4HHVNX/TDyZJEmS5jTIEOqbgHcDvwMcCZydZP8J55IkSVIPgwyhPhDYo6puAb6a5PN0roxw6kSTSZIkaU6DDKG+ZtbyFcBTJhVIkiRJ/c1bwCU5C7jbReCr6kkTSSRJkqS+BhlCfX3X402B5wLrJxNHkiRJ8xlkCHXdrKYvJ/nGhPJIkiRpHoMMoT6ga/EewOOA5RNLJEmSpL4GGUJdR+cYuNAZOr0MePEkQ0mSJKm3QYZQt1+IIJIkSRpMzwIuyXP6PbGqTh5/HEmSJM2nXw/cM/qsK8ACTpIkaQp6FnBV5QXrJUmSFqGe10JN8uGuxy9YkDSSJEmaV7+L2T+66/GfTTqIJEmSBtOvgLvb5bPGLcnxSX6c5IIe65Pk6CSXJDk/yWO71r0gyQ+amz2EkiRpo9FvEsM2SY6mc/63mcd3qKpXj+H1PwwcA3ykx/r9gJ2a257A+4A9m5MLvwVYRafQXJdkTVX9dAyZJEmSFrV+BdxfdD1eO4kXr6ovJVnZZ5MDgY9UVQFfS3K/JA8C9gbOqKrrAJKcATwd+PgkckqSJC0m/WahnrCQQXp4CPDDruUrm7Ze7XeT5DDgMIBtt912MiklSZIWUL9j4JaEqlpdVauqatWKFSumHUeSJGlki72Auwp4aNfyNk1br3ZJkqQlb94CLskTBmmbkDXAHzezUR8PXF9VVwOnA09Ncv8k9wee2rRJkiQtefNezB54N/DYAdo2WJKP05mQsFWSK+nMLL0XQFW9HzgN+F3gEuBm4IXNuuuS/BVwbrOrt81MaJAkSVrq+l3Mfi/g/wArkryua9WWwLJxvHhVHTLP+gJe0WPd8cDx48ghSZLUJv164DYBNm+22aKr/QbgoEmGkiRJUm/9TiNyDnBOkg9X1RULmEmSJEl9DHIM3M1J3gHsCmw601hVT5pYKkmSJPU0yGlEPgZ8D9geeCtwOXdOHpAkSdICG6SAe2BVHQfcVlXnVNWLAHvfJEmSpmSQIdTbmvurk+wP/Ah4wOQiSZIkqZ9BCri/TrIc+HM653/bEnjtRFNJkiSpp3kLuKr6bPPwemCfycaRJEnSfAa5lNbOSc5MckGzvFuSN04+miRJkuYyyBDqB4G/AD4AUFXnJ/kX4K8nGUxaDFYefuoGbX/5UftPKIkkSXcaZBbqfavqG7Pa1k8ijCRJkuY3SAF3bZIdgQJIchBw9URTSZIkqadBhlBfAawGdklyFXAZ8IcTTSVJkqSeBpmFeimwb5LNgHtU1Y2TjyVJkqReehZwSV7Xox2AqvrHCWWSJElSH/2Ogdui6/b6WctbTD6aJEmS5tKzB66q3jrzOMmzupclSZI0PYPMQoVmBqokSZKmb9ACTpIkSYtEv0kM3+HOnreHJTl/ZhVQVbXbpMNJkiTp7vqdRuSASb94kqcD/wwsA46tqqNmrf8nYJ9m8b7Ar1XV/Zp1twPfadb9d1U9c9J5JUmSFoN+kxiumOQLJ1kGvAd4CnAlcG6SNVV1UVeG13Zt/yrgMV27uKWqdp9kRkmSpMVomsfA7QFcUlWXVtUvgU8AB/bZ/hDg4wuSTJIkaRGbZgH3EOCHXctXNm13k2Q7YHvgi13NmyZZm+RrSZ7V60WSHNZst/aaa64ZQ2xJkqTpmreAS/Jng7RN2MHAp6rq9q627apqFfAHwLuS7DjXE6tqdVWtqqpVK1asWIiskiRJEzVID9wL5mg7dAyvfRXw0K7lbZq2uRzMrOHTqrqqub8UOJu7Hh8nSZK0ZPU7jcghdHq3tk+ypmvVFsB1Y3jtc4GdkmxPp3A7uHm92Tl2Ae4PfLWr7f7AzVV1a5KtgCcAbx9DJkmSpEWv32lEvgJcDWwFvLOr/Ubg/DmfsQGqan2SVwKn0zmNyPFVdWGStwFrq2qmaDwY+ERVdV8N4jeADyT5FZ1exKO6Z69KkiQtZfOdRuQKYK9JvXhVnQacNqvtzbOWj5zjeV8BHjWpXJIkSYvZIJMYnpPkB0muT3JDkhuT3LAQ4SRJknR3/YZQZ7wdeEZVfXfSYSRJkjS/QWah/q/FmyRJ0uIxSA/c2iQnAf8G3DrTWFUnTyqUJEmSehukgNsSuBl4aldbARZwkqRWWXn4qRu0/eVH7T+hJNJo5i3gquqFCxFEkiRJgxlkFurOSc5MckGzvFuSN04+miRJkuYyyCSGDwJHALcBVNX5dE6uK0mSpCkYpIC7b1V9Y1bb+kmEkSRJ0vwGKeCuTbIjnYkLJDmIziW2JEmSNAWDzEJ9BbAa2CXJVcBlwPMnmkqSJEk9DVLAVVXtm2Qz4B5VdWOS7ScdTJIkSXMbZAj10wBVdVNV3di0fWpykSRJktRPzx64JLsAuwLLkzyna9WWwKaTDiZJkqS59RtCfThwAHA/4Bld7TcCL51gJkmSJPXRs4CrqlOAU5LsVVVfXcBMkiRJ6mOQSQzfSvIKOsOpdwydVtWLJpZKkiRJPQ0yieFE4NeBpwHnANvQGUaVJEnSFAxSwD2sqt4E3FRVJwD7A3tONpYkSZJ6GaSAu625/1mSRwLLgV+bXCRJkiT1M0gBtzrJ/YE3AmuAi4C/H8eLJ3l6kouTXJLk8DnWH5rkmiTnNbeXdK17QZIfNLcXjCOPJElSG8w7iaGqjm0efgnYASDJc0d94STLgPcATwGuBM5NsqaqLpq16UlV9cpZz30A8BZgFZ1rtK5rnvvTUXNJkiQtdoP0wM3ln8bw2nsAl1TVpVX1S+ATwIEDPvdpwBlVdV1TtJ0BPH0MmSRJkha9QU4jMpeM4bUfAvywa/lK5p4c8dwkvwN8H3htVf2wx3MfMmfQ5DDgMIBtt912DLElCVYefuoGbX/5UftPKImkjdGwPXA11hS9/Tuwsqp2o9PLdsKG7qCqVlfVqqpatWLFirEHlCRJWmj9roX6HeYu1AJsPYbXvgp4aNfyNk3bHarqJ12LxwJv73ru3rOee/YYMkmSJC16/YZQD5jwa58L7JRkezoF2cHAH3RvkORBVXV1s/hM4LvN49OBv21mxwI8FThiwnklSZIWhX7XQr1iki9cVeuTvJJOMbYMOL6qLkzyNmBtVa0BXp3kmcB64Drg0Oa51yX5KzpFIMDbquq6SeaVJElaLIadxDAWVXUacNqstjd3PT6CHj1rVXU8cPxEA0qSJC1Cw05ikCRJ0pRYwEmSJLXMvEOoSZ4AHAls12wfoKpqh8lGkyRJ0lwGOQbuOOC1wDrg9snGkSRJ0nwGKeCur6rPTTyJJEmSBjJIAXdWkncAJwO3zjRW1TcnlkqSJEk9DVLAzVyfdFVXWwFPGn8cSZIkzWfeAq6q9lmIIJIkSRpMv2uh/mFVfTTJ6+ZaX1X/OLlYkiRJ6qVfD9xmzf0WCxFEkiRJg+l3LdQPNPdvXbg4kiRJmo9XYpAkSWoZCzhJkqSWGeQ0ItKitPLwUzf4OZcftf8EkkiStLDm7YFLsnWS45J8rll+RJIXTz6aJEmS5jLIEOqHgdOBBzfL3wdeM6E8kiRJmscgBdxWVfVJ4FcAVbUeL2ovSZI0NYMUcDcleSCdy2eR5PHA9RNNJUmSpJ4GmcTwOmANsGOSLwMrgIMmmkqSJEk9DXIt1G8meSLwcCDAxVV128STSZIkaU6DzEJ9BbB5VV1YVRcAmyf503G8eJKnJ7k4ySVJDp9j/euSXJTk/CRnJtmua93tSc5rbmvGkUeSJKkNBjkG7qVV9bOZhar6KfDSUV84yTLgPcB+wCOAQ5I8YtZm3wJWVdVuwKeAt3etu6Wqdm9uzxw1jyRJUlsMUsAtS5KZhabw2mQMr70HcElVXVpVvwQ+ARzYvUFVnVVVNzeLXwO2GcPrSpIktdogBdzngZOSPDnJk4GPN22jegjww67lK5u2Xl4MfK5redMka5N8Lcmzej0pyWHNdmuvueaakQJLkiQtBoPMQv1L4GXAy5vlM4BjJ5ZoDkn+EFgFPLGrebuquirJDsAXk3ynqv5r9nOrajWwGmDVqlW1IIElSZImaJBZqL8C3tfcxukq4KFdy9s0bXeRZF/gDcATq+rWrlxXNfeXJjkbeAxwtwJOkiRpqRlkFuoTkpyR5PtJLk1yWZJLx/Da5wI7Jdk+ySbAwXTON9f92o8BPgA8s6p+3NV+/yT3bh5vBTwBuGgMmSRJkha9QYZQjwNeC6xjjJfQqqr1SV5J5zqry4Djq+rCJG8D1lbVGuAdwObAvzbzKP67mXH6G8AHkvyKThF6VFVZwEmSpI3CIAXc9VX1ufk323BVdRpw2qy2N3c93rfH874CPGoSmSRJkha7QQq4s5K8AzgZ6D4G7ZsTSyWpNVYefuoGP+fyo/afQBJJ2ngMUsDt2dyv6mor4EnjjyNJkqT5DDILdZ+FCCJpMBva42VvlyQtPfMWcEm2Bv4WeHBV7ddc7mqvqjpu4um0URlmKG4xvoYkSZM2yJUYPkxnpuiDm+XvA6+ZUB5JkiTNY5ACbquq+iTwK+ic/oMxnk5EkiRJG2aQAu6mJA+kM3GBJI8Hrp9oKkmSJPU0yCzU19G5QsKOSb4MrAAOmmgqSZIk9dS3gEuyjM4F5J8IPBwIcHFV3bYA2SRJkjSHvgVcVd2e5JCq+ifgwgXKJEnSRsNTA2kYgwyhfjnJMcBJwE0zjV6JQZIkaToGKeB2b+7f1tXmlRgkSZKmxCsxSJIktcy8pxFJsnWS45J8rll+RJIXTz6aJEmS5uKVGCRJklpmkGPgtqqqTyY5AjpXYkjilRgkaZFxNqO08RikgPNKDC3gB7ckSRsPr8QgSZLUMj0LuCS/V1X/CvwUr8QgSZK0aPSbxHBEc//pqlpfVRdW1QUWb5IkSdPVr4C7LskXgB2SrJl9G8eLJ3l6kouTXJLk8DnW3zvJSc36rydZ2bXuiKb94iRPG0ceSZKkNuh3DNzvAo8FTgTeOe4XTrIMeA/wFOBK4Nwka6rqoq7NXgz8tKoeluRg4O+B5yV5BHAwsCud05v8R5Kdq8rZsZK0EdnQCVzSUtGvgDuuqv4oyQer6pwJvPYewCVVdSlAkk8ABwLdBdyBwJHN408BxyRJ0/6JqroVuCzJJc3+vjqBnJIkSYtKqmruFclFwL7A54C96UxguENVXTfSCycHAU+vqpc0y38E7FlVr+za5oJmmyub5f8C9qRT1H2tqj7atB8HfK6qPjXH6xwGHAaw7bbbPu6KK664e5gjl29Y+CMX4CwqZmqnpfA7WoifYSn8npaCDf13WIwm/bcxzO9osf29LsafYSH+9hbbv8MQkqyrqlVzrevXA/d+4ExgB2Addy3gqmlf9KpqNbAaYNWqVXNXq5IkSS3ScxJDVR1dVb8BHF9VO1TV9l23cRRvVwEP7Vrepmmbc5sk9wSWAz8Z8LmSJElLUs8CLsmWzcM3JHnA7NsYXvtcYKck2yfZhM6khNmzW9cAL2geHwR8sTpjvmuAg5tZqtsDOwHfGEMmSZKkRa/fEOq/AAfQGT6dbeQh1Oaaqq8ETgeW0enpuzDJ24C1VbUGOA44sZmkcB2dIo9mu0/SmfCwHniFM1AlSdLGomcBV1UHNPfbT+rFq+o04LRZbW/uevwL4Pd6PPdvgL+ZVDZJkqTFqu+1UJvjzvYDdmmaLgJOr6r1kw4mSZKkufU7Bu4hwIXAn9M5We5DgP8LXJjkwQsTT5IkSbP164H7G+B9VfWu7sYkrwb+jjsnF0iasQTOOySpi+9pLVL9CrjHV9Whsxur6ugkF08ukgA/NCRJUk/9LmZ/S591N487iCRJkgbTrwdueZLnzNEeYMs52iVJkrQA+hVw5wDP6LHuSxPIIkmSpAH0Ow/cCxcyiCRJkgbT7xg4SZIkLUJ9T+QrSdIdNnR2/JHLJ5NDkgWcNoCnNpEkaVGYt4BLcl86V2PYtqpemmQn4OFV9dmJp5MkTY5fyqTWGuQYuA8BtwJ7NctXAX89sUSSJEnqa5ACbseqejtwG0BV3UznXHCSJEmagkEKuF8muQ9QAEl2pNMjJ0mSpCkYZBLDkcDngYcm+RjwBODQCWaSNE0eFyVJi968BVxVfSHJOuDxdIZO/6yqrp14MkmSJM1pkFmo/w78C7Cmqm6afCRJkiT1M8gxcP8A/DZwUZJPJTkoyaYTziVJkqQeBhlCPQc4J8ky4EnAS4HjgS0nnE2S1GbDHE/p1RukgQx0LdRmFupzgT8BfhM4YZQXTfKAJGck+UFzf/85ttk9yVeTXJjk/CTP61r34SSXJTmvue0+Sh5JkqQ2mbeAS/JJ4Lt0et+OoXNeuFeN+LqHA2dW1U7Amc3ybDcDf1xVuwJPB96V5H5d6/+iqnZvbueNmEeSJKk1BjmNyHHAIVV1+xhf90Bg7+bxCcDZwF92b1BV3+96/KMkPwZWAD8bYw5JkqTW6VnAJXlSVX0R2Aw4MLnrxReq6uQRXnfrqrq6efw/wNb9Nk6yB7AJ8F9dzX+T5M00PXhVNefJhZMcBhwGsO22244QWZIkaXHo1wP3ROCLwDPmWFdA3wIuyX8Avz7HqjfcZUdVlaT67OdBwInAC6rqV03zEXQKv02A1XR679421/OranWzDatWrer5OpIkSW3Rs4Crqrc0D99WVZd1r0uy/Xw7rqp9e61L8r9JHlRVVzcF2o97bLclcCrwhqr6Wte+Z3rvbk3yIeD18+WRJElaKgaZhfrpOdo+NeLrrgFe0Dx+AXDK7A2SbAJ8BvhIVX1q1roHNfcBngVcMGIeSZKk1uh3DNwuwK7A8iTP6Vq1JTDqiXyPAj6Z5MXAFcDvN6+5CviTqnpJ0/Y7wAOTHNo879BmxunHkqygc2mv8+ic3kSSJGmj0O8YuIcDBwD3467Hwd1I52S+Q6uqnwBPnqN9LfCS5vFHgY/2eP6TRnl9SZKkNut3DNwpwClJ9qqqry5gJkmSNC7DXBFDi94g54H7VpJX0BlOvWPotKpeNLFUkiRJ6mmQAu5E4HvA0+icquP5dK7MIEnSeNlbJA1kkFmoD6uqNwE3VdUJwP7AnpONJUmSpF4GKeBua+5/luSRwHLg1yYXSZIkSf0MMoS6Osn9gTfROX/b5sCbJ5pKkiQtXcMMlR+5fPw5WmzeAq6qjm0engPsMNk4kiRJmk+/E/m+rt8Tq+ofxx9HkiRJ8+nXA7fFgqWQtHFxpqEkjaTfiXzfupBBJEmSNJh5Z6Em2TnJmUkuaJZ3S/LGyUeTJEnSXAY5jcgHgSNoTidSVecDB08ylCRJknobpIC7b1V9Y1bb+kmEkSRJ0vwGKeCuTbIjUABJDgKunmgqSZIk9TTIiXxfAawGdklyFXAZneuhSpIkaQoGOZHvpcC+STaj02N3M51j4K6YcDZJkiTNoecQapItkxyR5JgkT6FTuL0AuAT4/YUKKEmSpLvq1wN3IvBT4KvAS4E3AAGeXVXnTT6aJEmS5tKvgNuhqh4FkORYOhMXtq2qXyxIMkmSJM2p3yzU22YeVNXtwJXjKt6SPCDJGUl+0Nzfv8d2tyc5r7mt6WrfPsnXk1yS5KQkm4wjlyRJUhv0K+AeneSG5nYjsNvM4yQ3jPi6hwNnVtVOwJnN8lxuqardm9szu9r/HvinqnoYnWHeF4+YR5IkqTV6FnBVtayqtmxuW1TVPbsebzni6x4InNA8PgF41qBPTBLgScCnhnm+JElS2w1yIt9J2LqqZk4G/D/A1j222zTJ2iRfS/Kspu2BwM+qauZqEFcCD+n1QkkOa/ax9pprrhlHdkmSpKka5ES+Q0nyH8Cvz7HqDd0LVVVJqsdutquqq5LsAHwxyXeA6zckR1WtpnMiYlatWtXrdSRJklpjYgVcVe3ba12S/03yoKq6OsmDgB/32MdVzf2lSc4GHgN8Grhfkns2vXDbAFeN/QeQJElapKY1hLqGzkmBae5Pmb1BkvsnuXfzeCvgCcBFVVXAWcBB/Z4vSZK0VE2rgDsKeEqSHwD7NsskWdWccw7gN4C1Sb5Np2A7qqouatb9JfC6JJfQOSbuuAVNL0mSNEUTG0Ltp6p+Ajx5jva1wEuax18BHtXj+ZcCe0wyoyRJ0mI1rR44SZIkDWkqPXCSJEkb5MgNOgnFkmcPnCRJUstYwEmSJLWMBZwkSVLLWMBJkiS1jAWcJElSy1jASZIktYynEQGnJkuSpFaxB06SJKllLOAkSZJaxgJOkiSpZSzgJEmSWsYCTpIkqWUs4CRJklrGAk6SJKllLOAkSZJaxgJOkiSpZSzgJEmSWiZVNe0MCybJjcDF084xpK2Aa6cdYkBtyjqXtuZva25ob/a25p7R5vxtzd7W3DPamr+tuberqhVzrdjYroV6cVWtmnaIYSRZ25bsbco6l7bmb2tuaG/2tuae0eb8bc3e1twz2pq/rbn7cQhVkiSpZSzgJEmSWmZjK+BWTzvACNqUvU1Z59LW/G3NDe3N3tbcM9qcv63Z25p7RlvztzV3TxvVJAZJkqSlYGPrgZMkSWo9CzhJkqSWWZIFXJKfTzvDMJLcnuS8rtvKPtuenWQqU6KTVJKPdi3fM8k1ST47jTzDSPKs5ufYZdpZ5rMUft8z2vrenDFf/mm+L+fSpr/zuSR5Q5ILk5zffCbuOe1Mg0iyTZJTkvwgyX8l+eckm/TZ/jVJ7ruQGXvkqCTv7Fp+fZIjpxhpIF3/d16Y5NtJ/jzJkqxvui35H7Blbqmq3btul087UA83AY9Mcp9m+SnAVRuygyTTPgfhIcB/NvcDS7JsMnH6Gvn3rY3WUH/ni0GSvYADgMdW1W7AvsAPp5tqfkkCnAz8W1XtBOwMbA78TZ+nvQaYegEH3Ao8J8lW0w6ygWb+79yVzufjfsBbppxp4pZsAZdk8yRnJvlmku8kObBpX5nku0k+2FTrX+j6j3HRSfK4JOckWZfk9CQP6lr9R823jguS7LHA0U4D9m8eHwJ8fGZFkj2SfDXJt5J8JcnDm/ZDk6xJ8kXgzAXOe4ckmwO/BbwYOLhp2zvJl5KcmuTiJO+f+QaX5OdJ3pnk28BeU4o9zO/7S0l279ruP5M8eiFDz6X5XX+2a/mYJIc2jy9P8tau9+2i6znql38x6fN33ut3/7tJvtd81hy9CHp4HwRcW1W3AlTVtVX1o16fiU3v5z9P8TNxxpOAX1TVh5rctwOvBV6UZLMk/9DkOz/Jq5K8GngwcFaSs6aUecZ6OrM1Xzt7RfN/5xeb3Gcm2TbJ8iRXdH1Wbpbkh0nutdDBZ1TVj4HDgFemY1mSdyQ5t8n+sq6f6S+bz5lvJzlqWpmHtWQLOOAXwLOr6rHAPsA7m29GADsB72mq9Z8Bz51OxLu5T+4cPv1M8yZ4N3BQVT0OOJ67fou7b1XtDvxps24hfQI4OMmmwG7A17vWfQ/47ap6DPBm4G+71j2Wzs/zxAVLencHAp+vqu8DP0nyuKZ9D+BVwCOAHYHnNO2bAV+vqkdX1X8ueNqOYX7fxwGHAiTZGdi0qr69YImHd23zvn0f8Ppph2mxXn/nd9P8XX0A2K/5rJnz0j0L7AvAQ5N8P8l7kzxxkX8mztgVWNfdUFU3AP8NvARYCeze9Cp+rKqOBn4E7FNV+yxw1rm8B3h+kuWz2t8NnDCTGzi6qq4HzgNmPs8PAE6vqtsWKuxcqupSYBnwa3S+wFxfVb8J/Cbw0iTbJ9mPzntkz6p6NPD2qQUe0rSHsSYpwN8m+R3gV8BDgK2bdZdV1XnN43V03lCLwS3Nhw8ASR4JPBI4o6k9lwFXd23/cYCq+lKSLZPcr6p+thBBq+r8dI7RO4RO71C35cAJSXYCCuj+NnZGVV23EBn7OAT45+bxJ5rlzwLfaN74JPk4nd6LTwG3A5+eQs47DPn7/lfgTUn+AngR8OGFSTuyk5v7ddxZRGvD9fo7n8suwKVVdVmz/HE6vRhTU1U/b4rO36bzJfwk4K9ZpJ+JA9obeG9VrQdYBJ+Fd1NVNyT5CPBq4JauVXtx5/vxRO4seE4CngecRaen970LFHVQTwV2S3JQs7ycTifOvsCHqupmWJz/FvNZygXc8+l8i3xcVd2W5HJg02bdrV3b3Q4s1iHUABdWVa9hu9kn8Vvok/qtAf6BzofSA7va/wo4q6qe3RQdZ3etu2mhws0lyQPoDHE8KknR+Q+ggFPp/fv8RTMMMm0b9PuuqpuTnEHnW+bvAz17YBbYeu7a+7/prPUz78/bWZyfUfPln7o+f+ensMizd2ved2cDZyf5DvAKFvdnIsBFwEHdDUm2BLYFLp9CnmG8C/gm8KEBtl1Dp7PkAXQ+Y744wVwDSbIDnc+PH9P5f/RVVXX6rG2eNo1s47SUh1CXAz9uird9gO2mHWgIFwMr0jmYlyT3SrJr1/rnNe2/RaeL+PoFznc88Naq+s6s9uXceZD9oQuaaH4HASdW1XZVtbKqHgpcRudb/h5N1/o96PxupzVc2sswv+9jgaOBc6vqp5ONN7ArgEckuXeS+wFPnnKeDdWG/L3+zu/B3NkvBnbInTPfn7fQgWdL8vCmV3nG7sB3WdyfidA5vve+Sf64ybIMeCedHvDTgZelmcTVFD0ANwJbLHzUuTW9UZ+kM/w44ys0x1LS6SD5f822PwfOpdPb+9lpf9lNsgJ4P3BMda5UcDrw8pnj8pLsnGQz4AzghWlm/3b9W7TGYvx2O5LmjXErnTH6f2++ta2lc5xQq1TVL5tu36Ob4xHuSeeb0YXNJr9I8i06Q2YvmkK+K+kUB7O9nc6Q3hvp9GwtJocAfz+r7dPAy+l8CB0DPIzOcMBnFjZaf8P8vqtqXZIbGOyb9ETNvDer6odJPglcQKeo+NZ0kw2mZfl7/Z0fTOc/5rtkr6pbkvwp8PkkN9F5L0zb5sC7m0JzPXAJnWHd1SzSz0SAqqokzwbem+RNdIrm04D/j06v0M7A+UluAz5I5zNnNZ3f/Y8WyXFw0Ck6X9m1/CrgQ80hGdcAL+xadxKdQzb2XrB0d3WfJOfR+XdfT2eI9x+bdcfSOUzqm81x8NcAz6qqz6czyWttkl9y579Rayy5S2mlM8vug1U1rRlIaqEkewOvr6oDphxlrJI8mM4Q1C5V9aspZ2n1e7Pt+eeTZPPmuLPQOZD9B1X1T9PONagkZ9N5D6+ddhZpISypIdQkf0LnINY3TjuLNG3NEM7XgTcsguKt1e/Ntucf0EubXowL6QzLf2C6cST1s+R64CRJkpa6JdUDJ0mStDGwgJMkSWoZCzhJkqSWsYCTJElqGQs4SZKklvn/AWg7InWbluK9AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 720x720 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Call the plot functions with the years to be plotted\n",
"# mode: 'rel' or 'abs'\n",
"# base: 'FLUXNET' or 'MODIS'\n",
"\n",
"oensingen.plot_deltas(2010, 2011, mode='rel', base='FLUXNET')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9fbf83f6-3f20-4949-9b5d-97b277186c2d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}