Could not authenticate you from Shibboleth because "Can't verify csrf token authenticity.".
Newer
Older
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from datetime import datetime
class AnalysisTool:
"""Compare data from different cropsites by croptype"""
def __init__(self):
self.data = {}
def load_cropsite(self, cropsite_object, cropsite_name):
self.data[cropsite_name] = cropsite_object.data
def boxplot(self, croptype):
"""Plot relative deltas of different cropsites for a give croptype"""
colors = ['#134e6f', '#ffa822', '#ff6150', '#1ac0c6']
data = pd.DataFrame(columns=['Date', 'Month', 'Cropsite', 'Delta'])
start_month = 12
all_months = {}
for cropsite in self.data.keys():
if croptype in self.data[cropsite]['cropwise'].keys():
for season in self.data[cropsite]['cropwise'][croptype]:
dates = self.data[cropsite]['cropwise'][croptype][season]['dates']
deltas = self.data[cropsite]['cropwise'][croptype][season]['deltas_rel']['MODIS']
months = []
cropsites = []
first_month = dates[0].month
if first_month < start_month:
start_month = first_month
for date in dates:
months.append(date.strftime('%b'))
cropsites.append(cropsite)
df = pd.DataFrame(list(zip(dates, months, cropsites, np.array(deltas)*100)), columns=['Date', 'Month', 'Cropsite', 'Delta'])
data = pd.concat([data, df])
months = []
for i in range(start_month, start_month + 12):
if i > 12:
i = i - 12
month = datetime.strptime(str(i), '%m').strftime('%b')
if month in data.values:
months.append(month)
plt.figure(figsize=(10,5))
axs = sns.boxplot(x='Month', y='Delta', hue='Cropsite', palette=colors, data=data, order=months)
axs.set_title(croptype)
axs.set_ylabel('Relative Difference in Latent Heat Flux [%]')
axs.axhline(0, color='darkgrey', linestyle='--')
plt.show()
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
def scatterplot(self, croptype, cropsite='all', combine=True):
"""Plot latent heat values: MODIS vs FLUXNET"""
colors = ['#134e6f', '#ffa822', '#ff6150', '#1ac0c6']
fig, axs = plt.subplots(figsize=(10, 10))
if cropsite != 'all':
if cropsite in self.data.keys():
if croptype in self.data[cropsite]['cropwise'].keys():
data = self.data[cropsite]['cropwise'][croptype]
if combine == True:
x, y = [], []
for season in data.keys():
x += data[season]['values']['MODIS']
y += data[season]['values']['FLUXNET']
axs.scatter(x, y, alpha=0.1, color=colors[0])
z = np.polyfit(x, y, 1)
p = np.poly1d(z)
plt.plot(x,p(x), color=colors[0], label=cropsite + ' ' + str(list(data.keys())))
else:
for season in data.keys():
x = data[season]['values']['MODIS']
y = data[season]['values']['FLUXNET']
axs.scatter(x, y, alpha=0.1)
z = np.polyfit(x, y, 1)
p = np.poly1d(z)
plt.plot(x,p(x), label=cropsite + ' ' + str(season))
else:
raise ValueError('Invalid cropsite')
else:
for n, cropsite in enumerate(self.data.keys()):
if croptype in self.data[cropsite]['cropwise'].keys():
data = self.data[cropsite]['cropwise'][croptype]
if combine == True:
x, y = [], []
for season in data.keys():
x += data[season]['values']['MODIS']
y += data[season]['values']['FLUXNET']
axs.scatter(x, y, alpha=0.1, color=colors[n])
z = np.polyfit(x, y, 1)
p = np.poly1d(z)
plt.plot(x,p(x), color=colors[n], label=cropsite + ' ' + str(list(data.keys())))
else:
for season in data.keys():
x = data[season]['values']['MODIS']
y = data[season]['values']['FLUXNET']
axs.scatter(x, y, alpha=0.1)
z = np.polyfit(x, y, 1)
p = np.poly1d(z)
plt.plot(x,p(x), label=cropsite + ' ' + str(season))
axs.set_title(croptype)
axs.set_xlabel('MODIS Latent Heat Flux [W m-2]')
axs.set_ylabel('FLUXNET Latent Heat Flux [W m-2]')
plt.legend()
plt.show()