
IT Training and Continuing Education

Python - Data Analysis Essentials

David Pinezich
david.pinezich@gmail.com

18.05.2019 Slide 1

mailto:david.pinezich@gmail.com

IT Training and Continuing Education

Timeline

Part 1: Introduction, Course objectives, Python basics, Setting up Pycharm, Jupyter, Getting started with
numpy theory(array creation, slicing, utility functions) and exercises(puzzles)

Part 2: Continue Numpy theory(concatenating, splitting, universal functions, aggregations, boolean masking,
reading and writing data) and exercises(puzzles)

Part 3: Pandas theory(series and dataframe creation, basic dataframe and series methods, data selection,
universal functions) and exercises(puzzles)

Part 4: Continue Pandas theory(Reading and writing data, aggregations, filters, groupby) and
exercises(finish puzzles, 3 case studies), visualizations using Seaborn, small visualization example of covid

Slide 2

IT Training and Continuing Education

Using Pandas to Get More out of Data

IT Training and Continuing Education

Learning Objectives

– You know:
– What a Series and DataFrame is
– How to construct a Series and DataFrame from scratch
– How to import data using NumPy and/or Pandas
– How to aggregate, transform, and filter data using Pandas

Slide 4Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Pandas

– Pandas is a newer package built on top of NumPy
– Pandas documentation: https://pandas.pydata.org/pandas-docs/stable/

– NumPy is very useful for numerical computing tasks
– Pandas allows more flexibility: Attaching labels to data, working with missing data, etc.

– Note: We are going to use the pd alias for the pandas module in all the code samples on the following
slides

Slide 5

In [1]: import pandas as pd
 pd.__version__

Out [1]: '0.23.4'

 JUPYTER NB

Python - Data Analysis Essentials | David Pinezich

https://pandas.pydata.org/pandas-docs/stable/

IT Training and Continuing Education

The Pandas Objects

– Pandas objects are enhanced versions of NumPy arrays: The rows and columns are identified with
labels rather than simple integer indices

– Series object: A one-dimensional array of indexed data
– DataFrame object: A two-dimensional array with both flexible row indices and flexible column names

Slide 6Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

The Pandas Series Object

– A Pandas Series object is a one-dimensional array of indexed data
– NumPy array: has an implicitly defined integer index
– A Series object uses by default integer indices:

– A Series object can have an explicitly defined index associated with the values:

– We can access the index labels by using the index attribute:

Slide 7

In [1]: data1 = pd.Series([100,200,300]) JUPYTER NB

In [2]: data2 = pd.Series([100,200,300], index=["a","b","c"]) JUPYTER NB

In [2]: d2ind = data2.index JUPYTER NB

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

The Pandas Series Object

– A Python dictionary maps arbitrary keys to a set of arbitrary values
– A Series object maps typed keys to a set of typed values

– "Typed" means we know the type of the indices and elements beforehand, making Pandas Series
objects much more efficient than Python dictionaries for certain operations

– We can construct a Series object directly from a Python dictionary:

– Note: The index for the Series is drawn from the sorted keys

Slide 8

In [1]: data_dict = pd.Series({"c":123,"a":30,"b":100}) JUPYTER NB

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

The Pandas DataFrame Object

– A DataFrame object is an analog of a two-dimensional array both with flexible row indices and flexible
column names
– Both the rows and columns have a generalized index for accessing the data
– The row indices can be accessed by using the index attribute
– The column indices can be accessed by using the columns attribute

Slide 9Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Constructing DataFrame Objects

– You can think of a DataFrame as a sequence of aligned Series objects, meaning that each column of a
DataFrame is a Series

Slide 10

In [1]: df = pd.DataFrame({"col1":series1, "col2":series2, …}) JUPYTER NB

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Constructing DataFrame Objects

– There are multiple ways to construct a DataFrame object
– From a single Series object:

– From a list of dictionaries:

– From a dictionary of Series objects:

– From a two-dimensional NumPy array:

Slide 11

In [1]: pd.DataFrame(population, columns=["population"]) JUPYTER NB

In [2]: pd.DataFrame([{'a': 1, 'b': 2}, {'b': 3, 'c': 4}]) JUPYTER NB

In [3]: pd.DataFrame({'population': population, 'area': area}) JUPYTER NB

In [4]: pd.DataFrame(np.random.rand(3, 2),
 columns=['foo', 'bar'],
 index=['a', 'b', 'c'])

 JUPYTER NB

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Data Selection in Series

– Series as a dictionary:
– Select elements by key, e.g. data['a']
– Modify the Series object with familiar syntax, e.g. data['e'] = 100
– Check if a key exists by using the in operator
– Access all the keys by using the keys() method
– Iterate over (column name, Series) pairs by using the items() method

Slide 12Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Data Selection in Series

– Series as one-dimensional array:
– Select elements by the implicit integer index, e.g. data[0]
– Select elements by the explicit index, e.g. data['a']
– Select slices (by using an implicit integer index or an explicit index)

– Important: Slicing with an explicit index (e.g., data['a':'c']) will include the final index in the
slice, while slicing with an implicit index (e.g., data[0:3]) will exclude the final index from the
slice

– Use masking operations, e.g., data[data < 3]

Slide 13Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Data Selection in DataFrame

– DataFrame as a dictionary of related Series objects:
– Select Series by the column name, e.g. df['area']
– Modify the DataFrame object with familiar syntax, e.g. df['c3'] = df['c2']/ df['c1']

Slide 14Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Data Selection in DataFrame

– DataFrame as two-dimensional array:
– Access the underlying NumPy data array by using the values attribute

– df.values[0] will select the first row
– Use the iloc indexer to index, slice, and modify the data by using the implicit integer index
– Use the loc indexer to index, slice, and modify the data by using the explicit index

Slide 15Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Ufuncs and Pandas

– Pandas is designed to work with Numpy, thus any NumPy ufunc will work on Pandas Series and
DataFrame objects

– Index preservation: Indices are preserved when a new Pandas object will come out after applying ufuncs
– Index alignment: Pandas will align indices in the process of performing an operation

– Missing data is marked with NaN ("Not a Number")
– We can specify on how to fill value for any elements that might be missing by using the optional

keyword fill_value: A.add(B, fill_value=0)
– We can also use the dropna() method to drop missing values

– Note: Any of the ufuncs discussed for NumPy can be used in a similar manner with Pandas objects

Slide 16Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Ufuncs: Operations Between DataFrame and Series

– Operations between a DataFrame and a Series are similar to operations between a two-dimensional
and one-dimensional NumPy array (e.g., compute the difference of a two-dimensional array and one of
its rows)

Slide 17Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Checkpoint 1

- Read and run the Pandas notebook until Reading and Writing Data with Pandas
- Solve the Pandas puzzles exercises until exercise 14 (without 14)

Slide 18

Python - Data Analysis Essentials | Fall Semester
2021 | David Pinezich

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Reading (and Writing) Data with Pandas

IT Training and Continuing Education

File Types

– We will work with plaintext files only in this session; these contain only basic text characters and do not
include font, size, or colour information
– Binary files are all other file types, such as PDFs, images, executable programs etc.

Slide 20Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

The Current Working Directory

– Every program that runs on your computer has a current working directory
– It's the directory from where the program is executed / run
– Folder is the more modern name for a directory

– The root directory is the top-most directory and is addressed by /
– A directory mydir1 in the root directory can be addressed by /mydir1
– A directory mydir2 within the mydir1 directory can be address by /mydir/mydir2, and so on

Slide 21Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Absolute and Relative Paths

– An absolute path begins always with the root folder, e.g. /my/path/…
– A relative path is always relative to the program's current working directory

– If a program's current working directory is /myprogram and the directory contains a folder files with
a file test.txt, then the relative path to that file is just files/test.txt

– The absolute path to test.txt would be /myprogram/files/test.txt (note the root folder /)

Slide 22Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Reading Data with Pandas

– Pandas provides the pandas.read_csv() function to load data from a CSV file (or a file that uses a
different delimiter than a comma)
– The path you specify doesn't have to be on your hard disk; you can also provide the URL to file to

read it directly into a Pandas object
– We can set the optional argument error_bad_lines to False so that bad lines in the file get omitted

and do not cause an error
– Checkout the documentation to learn more about the optional arguments:

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

Slide 23Python - Data Analysis Essentials | David Pinezich

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

IT Training and Continuing Education

Some Interesting Data Sources

– Federal Statistical Office:
https://www.bfs.admin.ch/bfs/en/home/statistics/catalogues-databases/data.html

– OpenData: https://opendata.swiss/en/
– OpenData Zurich: https://www.stadt-zuerich.ch/opendata.secure.html
– United Nations: http://data.un.org/
– World Health Organization: http://apps.who.int/gho/data/node.home
– World Bank: https://data.worldbank.org/
– Kaggle: https://www.kaggle.com/datasets
– Cern: http://opendata.cern.ch/
– Nasa: https://data.nasa.gov/
– FiveThirtyEight: https://github.com/fivethirtyeight/data

Slide 24Python - Data Analysis Essentials | David Pinezich

https://www.bfs.admin.ch/bfs/en/home/statistics/catalogues-databases/data.html
https://opendata.swiss/en/
https://www.stadt-zuerich.ch/opendata.secure.html
http://data.un.org/
http://apps.who.int/gho/data/node.home
https://data.worldbank.org/
https://www.kaggle.com/datasets
http://opendata.cern.ch/
https://data.nasa.gov/
https://github.com/fivethirtyeight/data

IT Training and Continuing Education

Exporting DataFrame Objects to a File

– We can use the pandas.DataFrame.to_csv() method to export a DataFrame to a CSV file
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html

– Overview of all the DataFrame methods to import and export data:
https://pandas.pydata.org/pandas-docs/stable/api.html#id12

Slide 25Python - Data Analysis Essentials | David Pinezich

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/api.html#id12

IT Training and Continuing Education

Aggregating and Grouping Data in Pandas

IT Training and Continuing Education

Simple Aggregation in Pandas

– As with one-dimensional NumPy array, for a Pandas Series the aggregates return a single value
– For a DataFrame, the aggregates return by default results within each column
– Pandas Series and DataFrames include all of the common NumPy aggregates

– In addition, there is a convenience method describe() that computes several common aggregates
for each column and returns the result

Slide 27Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Split, Apply, Combine

– Split: Break up and group a DataFrame depending on the value of the specified key
– Apply: Apply some function, usually an aggregate, transformation, or filtering, within the individual groups
– Combine: Merge the results of these operations into an output array

Slide 28Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Split, Apply, Combine

– Pictured on the right you see an example
where in the apply step we
use a summation aggregation:

– The groupBy() method of DataFrames
can compute the most basic
split-apply-combine operations

Slide 29

Source: Python Data Science Handbook

Lets check out the groupBy() method {Live Coding}

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

The GroupBy Object

– The groupBy() method returns a DataFrameGroupBy: It's a special view of the DataFrame
– Helps get information about the groups, but does no actual computation until the aggregation is

applied ("lazy evaluation", i.e. evaluate only when needed)
– Apply an aggregate to this DataFrameGroupBy object: This will perform the appropriate

apply/combine steps to produce the desired result
– You can apply any Pandas or NumPy aggregation function

– Other important operations made available by a GroupBy are filter, transform, and apply

Slide 30Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Column Indexing and Iterating Over Groups

– The GroupBy object supports column indexing in the same way as the DataFrame, and returns a
modified GroupBy object

– The GroupBy object also supports direct iteration over the groups, returning each group as a Series or
DataFrame

Slide 31Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Aggregate, Filter, Transform, and Apply

– Aggregate: The aggregate() method can compute multiple aggregates at once
– Filter: The filter() method allows you to drop data based on group properties

– Note: filter() takes as an argument a function that returns a Boolean value specifying whether the
group passes the filtering

– Transformation: While aggregation must return a reduced version of the data, transform() can return
some transformed version of the full data to recombine (meaning that we still have the same number of
entries before and after the transformation)

– Apply: The apply() method lets you apply an arbitrary function to the group results. The function should
take a DataFrame, and return either a Pandas object or a scalar

Slide 32Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Checkpoint 2

- Finish reading and running the Pandas notebook
- Finish the Pandas Puzzle exercises

Slide 33Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Learning Objectives

– You know:
– What a Series and DataFrame is
– How to construct a Series and DataFrame from scratch
– How to import data using NumPy and/or Pandas
– How to aggregate, transform, and filter data using Pandas

Slide 34Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Addendum: Working with Files in Python

IT Training and Continuing Education

Opening Files with the open() Function

– Open a file with the open() function by providing a string path indicating the file you want to open
– The path can be an absolute or a relative path

– Typed like this, open() will open the file in the read mode, meaning we only can read data from the
file

– open() returns a File object, which represents a file on your computer
(it's simply another type of value in Python, much like lists and dictionaries)
– We can now call methods on the File object to read its content for example

Slide 36

file = open("/path/to/my/file.txt")
CODE

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Reading the Contents of Files

– We can use the File object's read() method to read the entire contents of a file as a string value
– Lets assume we have a plaintext file located at /path/to/file.txt with Well, hello there! as its

content. Then:

Slide 37

file = open("/path/to/file.txt")

print(file.read())

CODE
Content of the file

 OUTPUT

IN
TER

P.

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Reading the Contents of Files

– Alternatively, we can use the File object's readlines() method to get a list of string values from the
file, one string for each line of text

– Lets assume we have a plaintext file located at /path/to/newFile.txt with the following content:

18.05.2019 Slide 38

file = open("/path/to/newFile.txt")

print(file.readlines())

CODE
['First line\n', 'Second line\n',
 'Third line\n']

 OUTPUT

IN
TER

P.

First line
Second line
Third line

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Writing to Files

– We met the read mode in the previous slides
– There exist two more modes: the write mode and the append mode

– Write mode will overwrite the existing file and start from scratch (so watch out!)
– We pass "w" as the second argument to the open() function to open the file in write mode

– Append mode will append text to the end of the existing file
– We pass "a" as the second argument to the open() function to open the file in append mode

Slide 39Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Writing to Files

– If the filename to open() does not exist, both write and append mode will create a new, blank file
– After reading or writing a file, call the close() method before opening a file again
– Once we have a file opened in one of the writing modes, we can use the File object's write() method

and pass it a string argument to write it into the file
– The write() method will then return the number of bytes written to the file

Slide 40Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Reader Objects

– We need to create a Reader object to read data from a CSV file with the csv module
– The Reader object lets you iterate over lines in the CSV file

Slide 41Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Reader Objects

Slide 42

import csv

file = open("example.csv")
exReader = csv.reader(file)
data = list(exReader)
print(data)

CODE

INTERPRETER

[['4/5/2015 13:34', 'Apples', '73'],
['4/5/2015 3:41', 'Cherries', '85'],
['4/6/2015 12:46', 'Pears', '14'],
['4/8/2015 8:59', 'Oranges', '52']]

 OUTPUT

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Reading Data from Reader Objects in a for Loop

– For large files it is disadvantageous to load the entire file into memory at once
– We are going to use the Reader object in a for loop to iterate over each row of the CSV file, without

having to load the entire file into memory
– Note: The Reader object can be looped over only once. You must create the Reader object anew if

you want to reread the CSV file

Slide 43Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Reading Data from Reader Objects in a for Loop

Slide 44

import csv

file = open("example.csv")
exReader = csv.reader(file)
for row in exReader:
 print(str(exReader.line_num) + ": " + str(row))

CODE

INTERPRETER

1: ['4/5/2015 13:34', 'Apples', '73']
2: ['4/5/2015 3:41', 'Cherries', '85']
3: ['4/6/2015 12:46', 'Pears', '14']
4: ['4/8/2015 8:59', 'Oranges', '52']

 OUTPUT

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Writer Objects

– We can use a Writer object to write data to a CSV file
– We can pass a list to the writerow() method with the data

– Each value in the list is placed in its own cell in the output CSV file

Slide 45

import csv

file = open("output.csv", "w", newline="")

exWriter = csv.writer(file)
exWriter.writerow(["12/10/2017 14:45", "Fries", "9.5"])
exWriter.writerow(["11/09/2018 10:16", "Bread", "1.2"])

file.close()

CODE

12/10/2017 14:45,Fries,9.5
11/09/2018 10:16,Bread,1.2

output.csv

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

The delimiter and lineterminator Keyword Arguments

– If you want to separate cells with a tab character instead of a comma and you want the rows to be
double-spaced, we can use the delimiter and lineterminator keyword arguments with the reader()
and writer() methods
– The delimiter is the character that appears between cells on a row

– By default the delimiter is a comma ,
– The line terminator is the character that comes at the end of a row

– By default the line terminator is a newline

Slide 46

import csv

file = open("example.csv")
exReader = csv.reader(file, delimiter="\t", lineterminator="\n")

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Checkpoint 3

- Finish the Pandas dataset exercises

Slide 47Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Please Save Your Progress

Slide 48Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Questions

– If you have any questions, information, or more about any topic of today's course, feel free to write me at
david.pinezich@gmail.com

Slide 49Python - Data Analysis Essentials | David Pinezich

mailto:david.pinezich@gmail.com

IT Training and Continuing Education

References

– Course content:
– Al Sweigart, "Automate the Boring Stuff with Python"

https://automatetheboringstuff.com/
– Jake VanderPlas, "Python Data Science Handbook"

https://jakevdp.github.io/PythonDataScienceHandbook/

Slide 50Python - Data Analysis Essentials | David Pinezich

https://automatetheboringstuff.com/
https://jakevdp.github.io/PythonDataScienceHandbook/

