i) Universitat
b Grich'®
<sy Lurich

IT Training and Continuing Education

Python - Data Analysis Essentials

David Pinezich
david.pinezich@gmail.com

Slide 1

2ig 2\ Universitat
Ffle se o UZH
<sy Lurich

IT Training and Continuing Education

It's nice to have you here today

Python - Data Analysis Essentials | David Pinezich Slide 2

Universitat
Zuirich™

IT Training and Continuing Education

About Me

BSc and MSc SoftwareSystems @UZH

Work Experience

Paul Scherrer Institute (PSI)
Architonic AG

ti&m AG

Current:

— Helsana Insurances AG

— Kantonsschule Baden

Programming Experience

Current Projects

Python - Data Analysis Essentials | David Pinezich

Slide 3

Universitat
Zuirich™

IT Training and Continuing Education

About You

— Your major / occupation
— Your programming experience

— Your goals for this course

Go to www.menti.com and use the code 7840 1209

Python - Data Analysis Essentials | David Pinezich Slide 4

: Universitat
2 se o UZH
<sy Lurich

IT Training and Continuing Education

Learning Objectives for This Course

— The main goal is to get a better picture on the essential Python libraries (NumPy and pandas) for
preparing, cleaning, transforming and aggregating your data for analysis

— You get IPython notebooks that contain the slides' content (one notebook for the NumPy part and one for
pandas part), so you can experiment with all the material at home

— Learn how to visualize different datasets using Seaborn

Python - Data Analysis Essentials | David Pinezich Slide 5

Universitat
Zuirich™

IT Training and Continuing Education

Please Feel Free to Always Ask Questions

— Questions are a natural part of the learning process and you're always allowed to ask them
— Asking questions is an integral part of this course

— Even if you have a feeling that you're question might "not be good enough," or you don't understand a
concept "even if it should be easy to do so," please ask the question nonetheless

— For one, it gives me the possibility to try and come up with better / clearer explanations

— In case you have any questions after the course, please feel free to contact me via email at
david.pinezich@gmail.com or via Teams directly

Python - Data Analysis Essentials | David Pinezich Slide 6

mailto:david.pinezich@gmail.com

Universitat
Zuirich™

IT Training and Continuing Education

Learning By Doing (and Making Errors)

— Programming is best learned by doing
— Don't be afraid to try stuff out in Python and make errors
— Errors are a vital part of the learning process and help you understand situations much better

— If you should get stuck on an error during a programming exercise, please always feel free to call for my
help or the help of fellow students

— Also, don't be afraid to use pen and paper to solve the exercises or when you are trying to understand a
specific concept
— For one, it helps a lot to step away from the computer from time to time
— It also helps a lot to write down the immediate steps when trying to understand a complicated
concept

Python - Data Analysis Essentials | David Pinezich Slide 7

Universitat
Zuirich™

IT Training and Continuing Education

Feedback

I'm very thankful for all the feedback | get (be it positive or negative), since | want you to feel comfortable
and | love to improve my courses and my teaching skills

— Course is moving too fast?

— I'm not speaking clearly enough?
— Please feel free to inform me about anything whenever you feel like it ©

Python - Data Analysis Essentials | David Pinezich Slide 8

Universitat
Zuirich™

IT Training and Continuing Education

Checkpoint System

— Just sticking to a rigid schedule makes no sense
— That is why we will use a checkpoint system
— After some theory you will be presented with a checkpoint
— When a majority of the people solved the checkpoint
— Please raise your hand in Teams to indicate this!
— We will continue with the course/look at the solutions together

— If you finished the checkpoint, feel free to look at the next slides/exercises or just do something else
private. But please have Teams open somewhere, so that you notice when we continue again.

Python - Data Analysis Essentials | David Pinezich Slide 9

Universitat
Zuirich™

IT Training and Continuing Education

Timeline

Part 1: Introduction, Course objectives, Python basics, Setting up Pycharm, Jupyter, Getting started with
numpy theory (array creation, slicing, utility functions) and exercises(puzzles)

Part 2: Continue Numpy theory (concatenating, splitting, universal functions, aggregations, boolean
masking, reading and writing data) and exercises (puzzles)

Part 3: Pandas theory (series and dataframe creation, basic dataframe and series methods, data selection,
universal functions) and exercises (puzzles)

Part 4. Continue Pandas theory (Reading and writing data, aggregations, filters, groupby) and exercises
(finish puzzles, 3 case studies), visualizations using Seaborn, small visualization example of covid

Python - Data Analysis Essentials | David Pinezich Slide 10

Universitat
Zuirich™

IT Training and Continuing Education

Course Outline for Today

Course Organization

An Introduction to IPython and Jupyter

Setting up Pycharm

Important Basics of the Python Programming Language
Storing and Operating on Data with NumPy

a K~ b~

Python - Data Analysis Essentials | David Pinezich Slide 11

IT Training and Continuing Education

Course Organization

Universitat
Zuirich™

IT Training and Continuing Education

Course Organization

— You need to attend 3 of 4 sessions to receive your certificate
— If you will miss an appointment let me know, we will find a solution :-)

— | will do breaks every 50 minutes (+/- 5 minutes normally)
— Please ask questions if you are stuck - being stuck at the set up phase is a huge deal breaker

Python - Data Analysis Essentials | David Pinezich Slide 13

IT Training and Continuing Education

An Introduction to IPython and Jupyter

Universitat
Zuirich™

IT Training and Continuing Education

Python, the Programming Language

— Goal: we want be able to give the computer instructions to do specific things, e.g. reading a file,
computing the sum between two numbers, and so on

— Python is a formal language which we humans can read, type, and use to formulate instructions for the
computer

— "Formal language" means that there exists a specific set of rules we have to follow when writing code
with it

— The Python interpreter then translates our code to machine code, which can be directly executed by our
computer

— The interpreter is the interface between a human and a computer

Python - Data Analysis Essentials | David Pinezich Seite 15

Universitat
Zurich™

IT Training and Continuing Education

Python Code Is Often Quite Readable

— ldea for a program: — Corresponding Python code:

CODE
number 1 = 2

number 2 = 10

number 3 = 18.3

result = number_1 * number_2 + number_ 3
print(result)

Python - Data Analysis Essentials | David Pinezich Slide 16

il Universitat
<sy Lurich

IT Training and Continuing Education

Python Code Is Portable

— Python code can be interpreted and run / executed using any current operating system, e.g. Windows,
OS X, and Linux

Python - Data Analysis Essentials | David Pinezich Slide 17

Universitat
Zuirich™

IT Training and Continuing Education

The Python Ecosystem Is Huge

Data Visualization |

Data Management GQLAlchemg
— Python already comes with a lot s :
L pandas I _{" A} x. matplotlib
of useful tools and libraries A NetworkX .
plotly

Nonetheless, there also exist
thousands of third-party modules
and libraries which can be used
to accomplish various tasks,

§ ' ¢ xarray

@ Blaze

Data Processing

A python’

Python Environment

NumPy and Pandas being just @SCipy _ i:’ -
two of them — o~
— https://awesome-python.com/ - e NUMFOCUS
t‘r? (Jclklt‘”’n“gti g ='ﬂ>) U":‘l-’.")U: BETTER SCIHENCE
=
\ NLTK . 0'7' %\’ﬁyr ithonanywhere
€ Yotta Conseil 201

Python - Data Analysis Essentials | David Pinezich

Slide 18

https://awesome-python.com/

Universitat
Zuirich™

IT Training and Continuing Education

IPython: Interactive Python

— Interactive computing in Python
— Offers introspection: We can inspect values and errors, time our functions, and more
— Offers tab completion and history

— Offers a browser-based notebook interface with support for code, text, mathematical expressions and
more (it's called Jupyter nowadays)

— A notebook runs Python / IPython statements

Python - Data Analysis Essentials | David Pinezich Slide 19

Universitat
Zuirich™

IT Training and Continuing Education

IPython: Interactive Python

— We are going to run all the code in this course with IPython

— |Python supports Python 3.*

Python - Data Analysis Essentials | David Pinezich Slide 20

Universitat
Zuirich™

IT Training and Continuing Education

Help and Documentation in IPython

— How do | call a function? What arguments and options does It have?
— What does the source code of this Python value / object look like?

— What is in this package | imported?

— What variables / attributes or methods does this value / object have?

Python - Data Analysis Essentials | David Pinezich

Slide 21

Universitat
Zuirich™

IT Training and Continuing Education

Help and Documentation in IPython

— We can access documentation with ?

i) [C0E (e IPYTHON
Docstring:
print(value, ..., sep="

', end='\n', file=sys.stdout, flush=False)
Prints the values to a stream, or to sys.stdout by default.

— This notation works for about anything, including object methods and functions (as we will see later)

Python - Data Analysis Essentials | David Pinezich Slide 22

Universitat
Zuirich™

IT Training and Continuing Education

Help and Documentation in IPython

— We can access source code with ??

In [1]: def myfun(lst):
: for e in lst:
print(e)

IPYTHON

In [2]: myfun??
Signature: myfun(lst)
Docstring: <no docstring>
Source:
def myfun(lst):

for e in 1lst:

print(e)
File: ~/<ipython-input-9-42bed4lfecbd8>
Type: function

Python - Data Analysis Essentials | David Pinezich Slide 23

Universitat
Zuirich™

IT Training and Continuing Education

Shell Commands in IPython

— The shell is a way to interact textually with your computer
— Operating systems existed long before graphical user interfaces as we know and use today

— We can create folders, files, copy and delete them, and more with a shell

— Basically, we can submit a lot of commands via shell to the computer

Python - Data Analysis Essentials | David Pinezich Slide 24

Universitat
Zuirich™

IT Training and Continuing Education

Shell Commands in IPython

— Common shell commands
— pwd: Print the working directory (where we currently are in the file system)

— 1s: List working directory contents
— cd: Change directory
— mkdir: Make new directory
— In IPython we can use these shell commands by prefixing them with !

Python - Data Analysis Essentials | David Pinezich Slide 25

Universitat
Zuirich™

IT Training and Continuing Education

Help on Methods in IPython

— We can check the documentation for specific methods with ? in IPython

In [1]: 1st = [1,2,3] Lagiael
In [2]: 1lst.index?

Docstring:

L.index(value, [start, [stop]]) -> integer -- return first index of value.

Raises ValueError if the value is not present.

— IPython also provides tab-completion, meaning it will show all available methods for a specific value

« Let's check out the tab-completion in IPython {Live Coding}

Python - Data Analysis Essentials | David Pinezich Slide 26

Universitat
Zuirich™

IT Training and Continuing Education

Running External Code with %run

— We can use a text editor to write code and use IPython to run it with %run

my_print.py In [1]: %run my_print.py PYTHON

def fun(lst): 1

for e in 1lst: 2

print(e) Z
fun([1,2,3,4])

Python - Data Analysis Essentials | David Pinezich Slide 27

2 Universitat
>y Zurich™

IT Training and Continuing Education

Setting up Pycharm

Universitat
Zuirich™

IT Training and Continuing Education

Download the repository

Git: git clone https://qgitlab.uzh.ch/zi-it-training/appd/appd_dp_hs22.qit

Zip: https://qgitlab.uzh.ch/zi-it-training/appd/appd_dp _hs22/-/archive/main/appd_dp_hs22-main.zip

Python - Data Analysis Essentials | David Pinezich Slide 29

https://gitlab.uzh.ch/zi-it-training/appd/appd_dp_hs22.git
https://gitlab.uzh.ch/zi-it-training/appd/appd_dp_hs22/-/archive/main/appd_dp_hs22-main.zip

Universitat
Zuirich™

IT Training and Continuing Education

Git

davidpinezich@Mini-von-David:~

Last login: Sun Dec 5 21:26:17 on ttys@ol

POPAPS s S0t clone https://gitlab.uzh.ch/zi-it-training/appd/appd_dp_hs21.git
IJ Repository URL Version control: Git v
3 URL: v
O GitHub
dpinezich

Directory: [Users/davidpinezich/Development/teaching

O GitHub Enterprise
No accounts

) Space
No account

CANCEL

Python - Data Analysis Essentials | David Pinezich Slide 30

Universitat
Zuirich™

IT Training and Continuing Education

Zip

Python - Data Analysis Essentials | David Pinezich Slide 31

Universitat
Zuirich™

IT Training and Continuing Education

Open unzipped folder

w Project...
Alt+Insert

lew Scratch File Ctrl+ Alt+ Shift+Insert

Rename Project...

Settings... Ctrl+Alt+S

»

eload All from Disk Ctri+ Alt+Y
Invalidate Caches / Restart...

Export to HTML...

ower Save Mode

Exit

Python - Data Analysis Essentials | David Pinezich Slide 32

Universitat
Zuirich™

IT Training and Continuing Education

Preparation (ZIP & GIT)

Python - Data Analysis Essentials | David Pinezich Slide 33

Universitat
Zuirich™

IT Training and Continuing Education

Settings

Windows: File->Settings
Mac: Pycharm->Preferences

Python - Data Analysis Essentials | David Pinezich

Alt+Insert

Ctrl+Alt+Shift+Insert

Ctri+Alt+S
13

Export Settings...

Settings Repository..,

Ctrl+S

Ctrl+Alt+Y

Slide 34

Universitat
Zuirich™

IT Training and Continuing Education

Project interpreter

Version 3.6+ works for sure,
But other version should also work

Project: appf-uzh

» Appearance & Behavior Project Interpreter:

Keymap
» Editor Package

Plugins :
» Version Control

¥ Project: appf-uzh

Project Interpreter

P Build, Execution, Deployment
P Languages & Frameworks

P Tools

Project Interpreter

®

Python - Data Analysis Essentials | David Pinezich

Slide 35

Universitat
Zuirich™

IT Training and Continuing Education

Project: appf-uzh > Project Interpreter

Create environment

Appeara :P_c Add Python Interpreter

Keymap :
) e Virtualeny Environment * ' New environment
Editor

: Conda Environment Location: C:\Users\buban\Documents\appf-uzh\venv
Plugins
@ System Interpreter

Version Base interpreter: C\Users\buban\AppData\Local\Programs\Python\Python36\python.exe ~

Select your python interpreter

e P3 Pipenv Environment
Project: Inherit global site-packages
D SSH Interpreter :

roje Make available to all projects

238 Vagrant E
Proje gk Existing environment

: b WsL
Build, Ex & <No interpreter>

languag = Docker

Tools w Docker Compose

Cancel

Cancel

Python - Data Analysis Essentials | David Pinezich Slide 36

Universitat
Zuirich™

IT Training and Continuing Education

Settings

Add packages |

Appearance & Behavior Project Interpreter: = %% Pyth
Keymap
Editor
Plugins
Version Control
Project: appf-uzh for this
Project Interpreter
the exercisg
Build, Execution, Deployment

ad documer
Languages & Frameworks

Tools Jtion first, a
1Py functior
iterate thr

os, there pry

s if you're s

p with a sol

are vou

Cancel

Python - Data Analysis Essentials | David Pinezich Slide 37

Universitat
Zuirich™

IT Training and Continuing Educatio

Install packages

Install following packages:

jupyter
numpy
pandas
xIrd

Available Packages

Jupyter

JUPYLE

Jupytere
jupyter-alabaster-theme
Jupyter-annotator
Jupyter-
Jupyer-argparse
Jupyter-ascending
Jupyter-

jupyter-auto
Jupyter-boke
Jupyter-book
Jupyter-cache
Jupyter-
Jupyter-cjk-xe
jupyter-client
jupyter-conda
jupyter-conf-search
jupyter-config
jupyter-console
Jupyter-contrib-nbextens
Jupyter-conveyor
Jupyter-core
Jupyter-cr

Jupyter-ctrl
Jupyter-datainputtable
jupyter-di tap ‘'ocess
jupyter-di tat bles
Jupyter-a. skt p-server

Install Package Manage Repositories

Python - Data Analysis Essentials | David Pinezich

Description

Jupyter metapackage. Install all the Jupyter components in
Version

1.0.0

Author

Jupyter Development Team

Specify version

one go

Slide 38

Universitat
Zuirich™

IT Training and Continuing Education

’C| File Edit View Navigate Code Refactor Run Tools VCS Window Help

Checkpoint 1 [N

Project v
v M appf-uzh 8 2% | Managed: http

v M datasets

Pycharm is set up

You have the course '
package downloaded

The virtual
environment setup
with the needed |
packages

You can run all the

cells in the Numpy :
Notebook i oo

I 1:Project

arthome

2ipynb

Note_: We are going to

blems =TODO M %:Git B Terminal % Python Console Z Jupyter

n the Notebook

Python - Data Analysis Essentials | David Pinezich

Trusted | § [(S
value Ol e aicuondry ype, or d@ aicuonary vaiue)

* An object can also provide attributes next to methods, which may describe
properties of the specific object
For example, for an array object it might be interesting to see how many
elements it contains at the moment, so we might want to provide a size
attribute storing information about this specific property

NumPy Array Attributes

® The type of a NumPy array is numpy.ndarray (n-dimensional array):

example = np.array([,1,2,3])
type(example)

numpy .ndarray

® Useful array attributes
ndim : The number of dimensions, e.g. for a two-dimensional array its just 2

shape : Tuple containing the size of each dimension

size : The total size of the array (total number of elements)

rng = np.random.RandomState(41) # Ensure that the same random numbers are generated each tin
x1 = rng.randint(10, si 6) # One-dimensional array

x2 = rng.randint(10, size=(3, 4)) # Two-dimensional array

print("x2 ndim: *, x2.ndim)

print("x2 shape:™, x2.shape)

print("x2 size: ", x2.size)

print(“x2 dtype: ", x2.dtype)

x2 ndim: 2

x2 shape: (3, 4)
x2 size: 12

x2 dtype: int32

@) Event Log
Python 3. uzh) P master

Slide 39

Universitat
Zuirich™

IT Training and Continuing Education

Important Basics of the Python Programming Language

"%éﬁ”’

Universitat
Zuirich™

IT Training and Continuing Education

Learning Objectives

— You know
— what values, variables and statements are
— about data types like int, float, str, list, tuple, dict
— how to use lists and dictionaries and their differences

Python - Data Analysis Essentials | David Pinezich Slide 41

Universitat
Zuirich™

IT Training and Continuing Education

Values and Data Types

— Values are fundamental things like the number 2 or 1.234, or the string Hello
— A data type is a category for values, and a value always belongs to a single data type
— Integer data type: -1, -100, 0, 12, 34
— Float data type: -1.324, 0.14123, 10.1, 100.0
— String data type: ‘Hello’, ‘Word’, €‘Spaces are included’
— Listdata type: [1,2,3,4]
— Tuple data type: ("A", "B", "C")
— Dictionary data type: {"k1": 1, "k2": 132}

Python - Data Analysis Essentials | David Pinezich Slide 42

Universitat
Zuirich™

IT Training and Continuing Education

Storing Values in Variables

— Avariable is like a box where you can store a single value
— Assigning a value to a variable is done with an assignment statement.

myNumber = 123 FORE
— myNumber is the variable name, and 123 is the value stored within this variable
— Since a variable stores a value, a variable also belongs to a data type,
which we can query with the type function:
type (myNumber) FoRE
Slide 43

Python - Data Analysis Essentials | David Pinezich

Universitat
Zuirich™

IT Training and Continuing Education

Statements, Expressions, and Operators

— A statement is an instruction that the Python interpreter can execute
— An expression is a combination of values, variables, operators, and calls to functions

— Expressions need to be evaluated
— The evaluation of an expression always produces a single value
— An operator is a special token that represents a computation like an addition, multiplication, and division

— Values that the operator works on are called operands

Python - Data Analysis Essentials | David Pinezich Slide 44

Universitat
Zuirich™

IT Training and Continuing Education

The List Data Type

1. Initialization of a list: (Note: A list can contain elements of different data types)
1st = ["one", "two", 3, 4, 5] CODE
2. Accessing elements: (Note: First element in the list is at the index 0)

ell = 1st[0] FOPE
eln = 1st[-1]

3. Changing values: (Note: A Python list is a mutable data structure)

CODE

"abC"
423.132

1st[0]
1st[4]

03.11.2018 Python - Data Analysis Essentials | David Pinezich Seite 45

Universitat
Zuirich™

IT Training and Continuing Education

The List Data Type

4. Accessing slices: (Note: The slice goes up to, but will not include, the value at the second index)

s11 = 1st[2:3] FoRE

sl2 = 1st[1:]
5. Removing elements: (Note: Removing an element changes the underlying list structure)

del 1st[2] oD
6. Iterating over a list's elements:

for el in 1st: ceinis

print(el)
7. Check if a value exists in a list:
CODE

val exists = "one" in lst

Python - Data Analysis Essentials | David Pinezich Seite 46

Universitat
Zuirich™

IT Training and Continuing Education

The Tuple Data Type

1. Initialization of a tuple: (Note: A tuple can contain elements of different data types)

tpl = (1, 2, 3, "four", 5) CODE

2. Accessing elements: (Note: First element in the tuple is at the index 0)
tl1 = tpl[@] CODE
eln = tpl[-1]
3. We cannot change elements of a tuple, since it's an immutable data structure.
What we can do instead is copy its elements into a mutable data structure:

1st = list(tpl) FOPE
1st[0] = 34
1st[4] = "abc"

Python - Data Analysis Essentials | David Pinezich Seite 47

Universitat
Zuirich™

IT Training and Continuing Education

The Tuple Data Type

4. Accessing slices: (Note: The slice goes up to, but will not include, the value at the second index)

sll = tpl[2:3]
sl2 = tpl[1:]

CODE

5. We cannot remove elements from a tuple, since it's an immutable data structure.
6. Iterating over a tuple's elements:

for el in tpl: CODE
print(el)

7. Check if a value exists in a tuple:

val_exists = 1 in tpl CODE

Python - Data Analysis Essentials | David Pinezich Seite 48

Universitat
Zuirich™

IT Training and Continuing Education

The Dictionary Data Type

1. Initialization of a dictionary: (Note: all keys must be of the same data type; values can be anything)

dct = {llklll : "V1", llk2ll : "V2"} CODE
2. Accessing values: (Note: We access a value by its corresponding key)
vl = dct["k1"] FORE
v2 = dct["k2"]
3. Changing values: (Note: A Python dictionary is a mutable data structure)
CODE

dct["k1"] = "vinew"

Python - Data Analysis Essentials | David Pinezich Seite 49

Universitat
Zuirich™

IT Training and Continuing Education

The Dictionary Data Type

4. Accessing slices is not possible, since the data type of the key is not always integer
5. Removing elements: (Note: Removing an element changes the underlying list structure)

del dct["k1"] FonE

6. Iterating over a list's key-value pairs:

for (k,v) in dct.items(): CODE
pr‘int(k, LL IS Il, V, Sep=llll)

7. Check if an entry exists for a specific key: CODE

entry exists = "k1" in dct

Python - Data Analysis Essentials | David Pinezich Seite 50

Universitat
Zuirich™

IT Training and Continuing Education

Dictionaries vs. Lists

— Lists are ordered
— Firstitem in a list is located at the index O

— We can slice lists
Trying to access an index that is out of range results in an error message

— Dictionaries are unordered
There is no "first" item, since we can only access items using keys

— We cannot slice dictionaries
Trying to access a key that does not exist results in an error message

Python - Data Analysis Essentials | David Pinezich Slide 51

Universitat
Zuirich™

IT Training and Continuing Education

Dictionaries vs. Lists

— Lists are ordered; the order of the elements matters:

11 = [1,2,3,4] COPE False ouTEuT

12 = [2,1,3,4]
print(11 == 12)

— Dictionaries are unordered; the order of the elements does not matter:

{"a" :13, Ilbll :14} CODE Tr\ue OUTPUT

{"b":14, "a":13}

dl
d2

print(dl == d2)

Python - Data Analysis Essentials | David Pinezich Slide 52

Universitat
Zuirich™

IT Training and Continuing Education

Functions and Methods

Universitat
Zuirich™

IT Training and Continuing Education

Learning Objectives

— You know
— how to write a function
— how to call a method
— how to use tab-completion to help you with methods
— that different data types may provide different methods

Python - Data Analysis Essentials | David Pinezich Slide 54

Universitat
Zuirich™

IT Training and Continuing Education

N

Functions

def hello(): coRE

print(‘'Hello World"')

hello()

— Afunction is defined by using the def keyword
— The code in the block that follows the def statement is called the function body

— This code is only executed when the function gets called, not when it’s first defined
— The hello() after the function definition is a function call

— Afunction call is just a functions name followed by parentheses, possibly with some arguments in
between the parentheses

Python - Data Analysis Essentials | David Pinezich Slide 55

: Universitat
2 se o UZH
<sy Lurich

IT Training and Continuing Education

Functions with Arguments

— We can define functions that take in arguments, which are typed between the parentheses

— For example, the print() function takes an argument, namely the string we want to have printed on
the screen

def hello(name): CODE

print('Hello,

+ name)

hello('Giuseppe')

Python - Data Analysis Essentials | David Pinezich Slide 56

Universitat
Zuirich™

IT Training and Continuing Education

Functions with Return Values

— Functions can evaluate to a value, which is called the return value of the function

— For example, if we pass the argument "Hello' to the 1len() function, it will evaluate to the integer
value 5, which is the length of the string we passed

— We can specify what a function should return by using the return statement followed by the value we
want to return:

def sgr(x): CoE

return x*x

sqr_of_two = sqr(2)
print(str(sgqr_of two))

— Note: Functions without return value always evaluate to None

Python - Data Analysis Essentials | David Pinezich Slide 57

Universitat
Zuirich™

IT Training and Continuing Education

Methods

— A method is the same thing as a function, except it is called on a value
— Functioncall: my_ fun(a,b,c)
— Method call: my_ list.index("k")
— We called the index method on the value of my list, which is of type 1list
— Each data type (str, 1list, dict, etc.) has its own set of methods

— The list data type has several useful methods for finding, adding, removing, and manipulating
values in a list

— A method always acts on the value it has been called on
— listl.index("k") => index("k") acts on the value of 1ist1l
— list2.index("e") => index("e") acts on the value of 1ist2

Python - Data Analysis Essentials | David Pinezich Slide 58

Universitat
Zuirich™

IT Training and Continuing Education

Finding a value in a List: The index() Method

— The list data type provides an index() method, to which we can pass a value. If that value exists in the
list, the index of the value is returned, else Python produces a ValueError error

n = ["one", "two", "three", "four"] ©OnE Index of 'two': 1 ouTEdT
indl = n.index("two") Traceback (most recent call last):
print("Index of 'two': " + str(indl)) File "<stdin>", line 1, in <module>

ValueError: 'five' is not in list
ind2 = n.index("five")

Python - Data Analysis Essentials | David Pinezich Slide 59

Universitat
Zuirich™

IT Training and Continuing Education

Adding Values to a List: The append() and insert() Methods

— We can add new values to a list by calling the append() and insert() methods
— The append() method call adds the argument to the end of the list

— The insert() method call requires two arguments: the first argument is the index for the new value, and
the second argument is the new value to be inserted

Python - Data Analysis Essentials | David Pinezich Slide 60

Universitat
Zuirich™

IT Training and Continuing Education

In-Place Changes

— Both the append() and insert () methods will change the list on which they're called on

— We call these kind of changes in-place changes

Python - Data Analysis Essentials | David Pinezich Slide 61

Universitat
Zuirich™

IT Training and Continuing Education

Adding Values to a List: The append() and insert() Methods

— Lets append a new value at the end of a list:

alpha = [llall, llbll, llcll] CODE
alpha.append("d")

print(alpha)

Python - Data Analysis Essentials | David Pinezich Slide 62

Universitat
Zuirich™

IT Training and Continuing Education

Adding Values to a List: The append() and insert() Methods

N

— Lets add a new element at index 1 of the list:

alpha = [llall, llbll, llCll] CODE

alpha.insert(1, "w")
print(alpha)
— Note: After adding the new element, all previously existing elements at index 1, 2, and above are moved

to the right. This can be a costly operation if we insert elements in very large lists like this

Python - Data Analysis Essentials | David Pinezich Slide 63

Universitat
Zuirich™

IT Training and Continuing Education

Adding Values to a List: The append() and insert() Methods

— Note: It's not alpha = alpha.append("d") or alpha = alpha.insert(1, "w")
— Both functions do not return the modified list alpha (both calls evaluate to None)
— The list alpha is rather modified in place (a list is a mutable data type)

Python - Data Analysis Essentials | David Pinezich Slide 64

2ig 2\ Universitat
Ffle se o UZH
<sy Lurich

IT Training and Continuing Education

Different Methods for Different Data Types

— Methods belong to a single data type

— append() and insert() are list methods and can be called only on lists, not on other values such as
strings or integers

num = 1023 COBE

What might happen here?
num.insert(1, "w")

Python - Data Analysis Essentials | David Pinezich Slide 65

, Universitat
<sy Lurich

IT Training and Continuing Education

Removing Values from Lists (In-Place): The remove() Method

— We can pass a value we want to be removed to the remove () method of a specific list:

alpha = [llall, llbll, "C"] CODE
alpha.remove("a")

print(alpha)

— Note: If you know the index of the value we want to remove, we can still use the del operator for the
removal; if you know the value, just use the remove () method

Python - Data Analysis Essentials | David Pinezich Slide 66

il Universitat
<sy Lurich

IT Training and Continuing Education

Sorting the Values in a List (In-Place): The sort() Method

— We can sort lists of strings or numbers by calling the sort () method on a specific list:

alpha = ["c", "a", "b"] e ['a', 'b', 'C'] OUTPUT
alpha.sort() [-23, 0.4, 1, 3.14, 10]
print(alpha)

num = [3.14, 10, 1, -23, 0.4]

num.sort()
print(num)

Python - Data Analysis Essentials | David Pinezich Slide 67

Universitat
Zuirich™

IT Training and Continuing Education

Learning Objectives

— You know
— how to write a function
— how to call a method
— how to use tab-completion to help you with methods
— that different data types may provide different methods

Python - Data Analysis Essentials | David Pinezich Slide 68

IT Training and Continuing Education

Storing and Operating on Data with NumPy

_ Universitat
<sy Lurich

IT Training and Continuing Education

Python Data Science Handbook

— This part of the course is heavily based on Jake Vanderplas' "Python Data Science Handbook"
— You can find the official online version here: https://jakevdp.qgithub.io/PythonDataScienceHandbook/

— Repository with lots of Jupyter notebooks on the subject:
https://qithub.com/jakevdp/PythonDataScienceHandbook/tree/master/notebooks

Python - Data Analysis Essentials | David Pinezich Slide 70

https://jakevdp.github.io/PythonDataScienceHandbook/
https://github.com/jakevdp/PythonDataScienceHandbook/tree/master/notebooks

Universitat

Zurich™

IT Training and Continuing Education

Learning Objectives

— You know:

How to create one- and two-dimensional NumPy arrays
How to access these arrays

How to use the aggregation functions

How to work with Boolean arrays

How to read and write files with NumPy

Python - Data Analysis Essentials | David Pinezich

Slide 71

Universitat

'; 2 se o UZH
<sy Lurich

IT Training and Continuing Education

Autosave Your Notebook(Only needed if not working in Pycharm)

In

Activate autosave for your current notebook by using %autosave:
Only needed if not working in Pycharm. Pycharm saves everything automatically per default.

Do not enable if working in Pycharm, since the Jupyter autosave function and the Pycharm autosave
function will interfere with each other.

[1]: %autosave 30

. JUPYTER NB
Autosaving every 30 seconds

Python - Data Analysis Essentials | David Pinezich Slide 72

Universitat
Zuirich™

IT Training and Continuing Education

NumPy: Numerical Python

— NumPy: Python library that adds support for large, multi-dimensional arrays and matrices, along with a
large collection of high-level mathematical functions to operate on these arrays

— NumPy documentation: htips://docs.scipy.org/doc/
— Use your NumPy version number to access the corresponding documentation

In [1]: import numpy as np JUPYTER NB

np.__version

out [1]: '1.15.4°

— Note: We are going to use the np alias for the numpy module in all the code samples on the following
slides

Python - Data Analysis Essentials | David Pinezich Slide 73

https://docs.scipy.org/doc/

: Universitat
2 se o UZH
<sy Lurich

IT Training and Continuing Education

NumPy Arrays

— Python's vanilla lists are heterogeneous: Each item in the list can be of a different data type

— Comes at a cost: Each item in the list must contain its own type info and other information

— It is much more efficient to store data in a fixed-type array (all elements are of the same type)
— NumPy arrays are homogeneous: Each item in the list is of the same type

— They are much more efficient for storing and manipulating data

NOTE: Colloquially the terms array, vector, matrix have all the same meaning namely they denote a
np.array([1,2,3]). There are differences for the terms depending on the field(linear algebra, computer
science...), but for this course they all mean the same thing!

Python - Data Analysis Essentials | David Pinezich

Universitat
Zuirich™

IT Training and Continuing Education

NumPy Arrays

— Use the np.array() method to create a NumPy array:

In [1]: example = np.array([0,1,2,5]) JUPYTER NB
example

Out [1]: array([1, 2, 3, 5])

Python - Data Analysis Essentials | David Pinezich Slide 75

Universitat
Zuirich™

IT Training and Continuing Education

Multidimensional NumPy Arrays

One-dimensional array: we only need one coordinate to address a single item, namely an integer index

— Multidimensional array: we now need multiple indices to address a single item
— For an n-dimensional array we need up to n indices to address a single item

— We're going to mainly work with two-dimensional arrays in this course, i.e. n = 2

In [1]: twodim = np.array([[1,2,3], JUPYTER NB
[4.’5J6])
[7,8,91])
Out [1]: 1 2 3 (Visual aid only, not real output)
4 5 6
8 9
Slide 76

Python - Data Analysis Essentials | David Pinezich

Universitat
Zuirich™

IT Training and Continuing Education

Two-Dimensional NumPy Arrays

— Two-dimensional NumPy arrays have rows (horizontally) and columns (vertically)

Row ©
Row 1
Row 2

N AR |puwnon
o | wvi|Nn|TUWN0O)
0| o w|zuwnon

Python - Data Analysis Essentials | David Pinezich Slide 77

Universitat
Zuirich™

IT Training and Continuing Education

Array Indexing

— Array indexing for one-dimensional arrays works as usual: onedim[0]
— Accessing items in a two-dimensional array requires you to specify two indices: twodim[©,1]
— Firstindex is the row number (here 0), second index is the column number (here 1)

& & &

® " o
Row 0 1 n 3 twodim
Row 1 4 5 6
Row 2 7 8 9

18.05.2019 Python - Data Analysis Essentials | David Pinezich Slide 78

Universitat
Zuirich™

IT Training and Continuing Education

Objects in Python

— Almost everything in Python is an object, with its properties and methods

— For example, a dictionary is an object that provides an items() method, which can only be called on a
dictionary object (which is the same as a value of the dictionary type, or a dictionary value)

— An object can also provide attributes next to methods, which may describe properties of the specific
object

— For example, for an array object it might be interesting to see how many elements it contains at the
moment, so we might want to provide a size attribute storing information about this specific property

Python - Data Analysis Essentials | David Pinezich Slide 79

Universitat
Zuirich™

IT Training and Continuing Education

NumPy Array Attributes

— The type of a NumPy array is numpy.ndarray (n-dimensional array)

In [1]: example = np.array([0,1,2,3])
type(example)

Out [1]: np.ndarray

— Useful array attributes
— ndim: The number of dimensions, e.g. for a two-dimensional array its just 2

— shape: Tuple containing the size of each dimension

— size: The total size of the array (total number of elements)

Python - Data Analysis Essentials | David Pinezich

JUPYTER NB

Slide 80

Universitat
Zuirich™

IT Training and Continuing Education

Creating Arrays from Scratch

— NumPy provides a wide range of functions for the creation of arrays:
https://docs.scipy.org/doc/numpy-1.15.4/reference/routines.array-creation.html#routines-array-creation

— For example: np.arange, np.zeros, np.ones, np.linspace, etc.

— NumPy also provides functions to create arrays filled with random data:
https://docs.scipy.org/doc/numpy-1.15.1/reference/routines.random.html

— For example: np.random.random, np.random.randint, etc.

Python - Data Analysis Essentials | David Pinezich Slide 81

https://docs.scipy.org/doc/numpy-1.15.4/reference/routines.array-creation.html#routines-array-creation
https://docs.scipy.org/doc/numpy-1.15.1/reference/routines.random.html

Universitat
Zuirich™

IT Training and Continuing Education

NumPy Data Types

— Use the keyword dtype to specify the data type of the array elements:

In [1]: floats = np.array([0,1,2,3], dtype="float32") JUPYTER NB
floats

Out [1]: array([@., 1., 2., 3.], dtype=float32)

— Overview of available data types: hitps://docs.scipy.org/doc/numpy-1.15.4/user/basics.types.html

Python - Data Analysis Essentials | David Pinezich Slide 82

https://docs.scipy.org/doc/numpy-1.15.4/user/basics.types.html

Universitat
Zuirich™

IT Training and Continuing Education

Array Slicing: One-Dimensional Subarrays

— Let x be a one-dimensional NumPy array
— The NumPYy slicing syntax follows that of the standard Python list:

X[start:stop:step]
Slice . Descripon

x[:5] First five elements
x[5:] All elements after index 5
x[4:7] Middle subarray
x[::2] Every other element

x[1::2] Every other element, starting at index 1

x[::-1] All elements, reversed

x[5::-1] Reverses all elements up until index 5 (included)

Python - Data Analysis Essentials | David Pinezich Slide 83

Universitat
Zuirich™

IT Training and Continuing Education

Array Slicing: Multidimensional Subarrays

— Let Y be a two-dimensional NumPy array. Multiple slices are now separated by commas:
Y[start:stop:step, start:stop:step]

Sice " Tbescription

Y[:2, :3] First two rows and first three columns
Y[:3, ::2] First three rows and every other column
Y[::-1, ::-1] Reverse rows and columns
Y[:, 0] First column
Y[2, :] Third row
Y[2] Same as Y[2, :], so third row again

Python - Data Analysis Essentials | David Pinezich Slide 84

Universitat
Zuirich™

IT Training and Continuing Education

Array Views and Copies

— With Python lists, the slices will be copies: If we modify the subarray, only the copy gets changed

— With NumPy arrays, the slices will be direct views: If we modify the subarray, the original array gets
changed, too
— Very useful: When working with large datasets, we don't need to copy any data (costly operation)

— Creating copies: we can use the copy () method of a slice to create a copy of the specific subarray

— Note: The type of a slice is again numpy.ndarray

Python - Data Analysis Essentials | David Pinezich Slide 85

Universitat

Zurich™

IT Training and Continuing Education

Array Slicing: Multidimensional Subarrays

— Since we're working with direct views, we can update the data using array slicing:

Y

100 24 (%
41 30 12
10 5 53

— Y[:,1] =

A 4
100 | 1 0
41 | 2 | 12
10 | 3 | 53

Python - Data Analysis Essentials | David Pinezich

Slide 86

Universitat
Zuirich™

IT Training and Continuing Education

Reshaping

— We can use the reshape() method on an NumPy array to actually change its shape:

In [1]: grid = np.arange(1, 10).reshape((3, 3)) JUPYTER NB

print(grid)

[[1 2 3]
[4 5 6]
[7 8 9]]

— For this to work, the size of the initial array must match the size of the reshaped array
— Important. reshape () will return a new view if possible; otherwise, it will be a copy

— Remember: In case of a view, if you change an entry of the reshaped array, it will also change the
initial array

Python - Data Analysis Essentials | David Pinezich Slide 87

Universitat
Zuirich™

IT Training and Continuing Education

Array Concatenation and Splitting

— Concatenation, or joining of two or multiple arrays in NumPy can be accomplished through the functions
np.concatenate, np.vstack, and np.hstack

— Join multiple two-dimensional arrays: np.concatenate([twodiml, twodim2,...], axis=0)

— Atwo-dimensional array has two axes: The first running vertically downwards across rows (axis
0), and the second running horizontally across columns (axis 1)

— The opposite of concatenation is splitting, which is provided by the functions np.split, np.hsplit (split
horizontally), and np.vsplit (split vertically)

— For each of these we can pass a list of indices giving the split points

Python - Data Analysis Essentials | David Pinezich Slide 88

Universitat
Zuirich™

IT Training and Continuing Education

Faster Operations Instead of Slow for Loops

— Looping over arrays to operate on each element can be a quite slow operation in Python

Let’s check this out on a concrete example, which we will be timing using {Live Coding}
IPython's %timeit magic command

— One of the reasons why the for loop approach is so slow is because of the type-checking and function
dispatches that must be done at each iteration of the cycle

— Python needs to examine the object's type and do a dynamic lookup of the correct function to use for
that type

Python - Data Analysis Essentials | David Pinezich Slide 89

Universitat
Zuirich™

IT Training and Continuing Education

NumPy's Universal Functions

— NumPy provides very fast, vectorized operations which are implemented via universal functions (ufuncs),
whose main purpose is to quickly execute repeated operations on values in NumPy arrays

— A vectorized operation is performed on the array, which will then be applied to each element
— Instead of computing the reciprocal using a for loop, let us do it by using a universal function:

In [1]: %timeit (1.0 / big_array) JUPYTER NB
Lets time this new approach in our Jupyter notebook {Live Coding}

— We can use ufuncs to apply an operation between a scalar and an array, but we can also operate
between two arrays

In [1]: np.array([4,5,6]) / np.array([1,2,3]) JUPYTER NB

Python - Data Analysis Essentials | David Pinezich Slide 90

Universitat
Zuirich™

IT Training and Continuing Education

NumPy's Universal Functions

+ np.add Addition

- np.subtract Subtraction

- np.negative Unary negation (e.g., -2)

+? np.multiply Multiplication

/ np.divide Division

// np.floor_divide Floor division (e.g., 3 // 2 = 1)

i np.power Exponentiation (e.g., 3**2 = 8)

% np.mod Modulus/remainder (e.g.,9 % 4 = 1)

Python - Data Analysis Essentials | David Pinezich Slide 91

Universitat
Zuirich™

IT Training and Continuing Education

Advanced Ufunc Features: Specifying Output and Aggregates

— ufuncs provide a few specialized features
— We can specify where to store a result (useful for large calculations)
— If no out argument is provided, a newly-allocated array is returned (can be costly memory-wise)
In [1]: np.multiply(x,10, out=y) ZURVIERING

— Reduce: Repeatedly apply a given operation to the elements of an array until only one single result
remains

— For example, np.add.reduce(x) applies addition to the elements until the one result remains,
namely the sum of all elements

— Accumulate: Almost same as reduce, but also stores the intermediate results of the computation

Lets see how these advanced ufunc features work {Live Coding}

Python - Data Analysis Essentials | David Pinezich Slide 92

Universitat
Zuirich™

IT Training and Continuing Education

Aggregations

— If we want to compute summary statistics for the data in question, aggregates are very useful
— Common summary statistics: mean, standard deviation, median, minimum, maximum, quantiles, etc.

— NumPy provides fast built-in aggregation function for working with arrays:

In [1]: %timeit np.max(x) # NumPy ufunc JUPYTER NB
%timeit max(x) # Python function
— Summing values in an array:
In [1]: %timeit np.sum(x) # NumPy ufunc JUPYTER NB
%timeit sum(x) # Python function
Lets check out other aggregation functions {Live Coding}
Slide 93

Python - Data Analysis Essentials | David Pinezich

: Universitat
2 se o UZH
<sy Lurich

IT Training and Continuing Education

Some Other Aggregate Functions

np.sum Compute sum of elements

np.prod Compute product of elements

np.mean Compute mean of elements

np.std Compute standard deviation

np.min Find minimum value

np . max Find maximum value
np.argmin Find index of minimum value
np.argmax Find index of maximum value
np.median Compute median of elements

np.percentile

Python - Data Analysis Essentials | David Pinezich Slide 94

Universitat
Zuirich™

IT Training and Continuing Education

Multidimensional Aggregates

By default, each NumPy aggregation function will return the aggregate over the entire array
Aggregation functions take an additional argument specifying the axis along which the aggregate is

computed
For example, we can find the minimum value within each column by specifying axis=0:

In [1]: twodim.min(axis=0) JUPYTER NB
Out [1]: array([...]) # Array containing min. of each column

Lets check out why axis=0 returns a result in regard to the columns and {Live Coding}

lets visualize these results by switching between the axes in a two-dim. array

Python - Data Analysis Essentials | David Pinezich Slide 95

Universitat
Zuirich™

IT Training and Continuing Education

Example: a = array([[1, 2],
[3, 4]])

a.sum(axis=0) a.sum(axis=1) a.sum()

axis=0 axis=1 axis=None

axis 1

col 1|col 2|col 3|(col 4

axis O

row 1

row 2

row 3

array([4, 6]) array([3, 7]) 10

Python - Data Analysis Essentials | David Pinezich Slide 96

Universitat
Zuirich™

IT Training and Continuing Education

Checkpoint 2

- For the exercises there is a tip for each exercise. Check out the
function documentation on: htips.//numpy.org/doc/ to find out more
about it. This can often be useful and reading the manual of
something is often the fastest way to learn about it.

- This being said don’t be afraid to ask if you don’t understand
something.

- You read and ran the cells in the Numpy notebook up until
Multidimensional Aggregates

- You finished the Numpy exercises up to exercise 20(without 20)

Python - Data Analysis Essentials | David Pinezich Slide 97

https://numpy.org/doc/

Universitat
Zuirich™

IT Training and Continuing Education

The Boolean Data Type

Boolean data type: True, False (only two possible values)

Comparison operators compare two values and evaluate to a single Boolean value
— The comparison operators are ==, =, <, >, <=, and >=

Boolean operators are used to compare Boolean values

— The Boolean operators are or, and, and not

We can mix Boolean and comparison operators to create conditions

Lets see the Boolean and comparison operators in action

{Live Coding}

Python - Data Analysis Essentials | David Pinezich

Slide 98

Universitat
Zuirich™

IT Training and Continuing Education

Comparison Operators as ufuncs

— NumPy also implements comparison operators as element-wise ufuncs
— The result of these comparison operators is always an array with a Boolean data type:

In [1]: np.array([1,2,3]) < 2 JUPYTER NB

== np.equal

= np.not_equal

< np.less

<= np.less_equal

> np.greater

>= np.greater_equal

Python - Data Analysis Essentials | David Pinezich Slide 99

Universitat
Zuirich™

IT Training and Continuing Education

Comparison Operators as ufuncs

— ltis also possible to do an element-by-element comparison of two arrays:

In [1]: np.array([1,2,3]) < np.array([0,4,2]) JUPYTER NB

These ufuncs will work on arrays of any size and shape. {Live Coding}

Lets see an example on how a multidimensional example looks like

Python - Data Analysis Essentials | David Pinezich Slide 100

Universitat
Zuirich™

IT Training and Continuing Education

Working with Boolean Arrays: Counting Entries

The np.count_nonzero() function will count the number of True entries in a Boolean array:

In [1]: nums = np.array([1,2,3,4,5]) JUPYTER NB

np.count_nonzero(nums < 4)

Out [1]: 3

We can also use the np.sum() function to accomplish the same. In this case, True is interpreted as 1
and False as 0:

In [1]: np.sum(nums < 4) JUPYTER NB

Out [1]: 3

Lets checkout the np.any() and np.all() functions in relation to Boolean arrays {Live Coding}
Slide 101

Python - Data Analysis Essentials | David Pinezich

Universitat
Zuirich™

IT Training and Continuing Education

Working with Boolean Arrays: Boolean Operators

— NumPy also implements bitwise logic operators as element-wise ufuncs
— We can use these bitwise logic operators to construct compound conditions (consisting of multiple

conditions)
& np.bitwise_and
| np.bitwise_or
A np.bitwise_xor
~ np.bitwise_not
These ufuncs will work on arrays of any size and shape. {Live Coding}

Lets see an example on how a multidimensional example looks like

Python - Data Analysis Essentials | David Pinezich Slide 102

Universitat
Zuirich™

IT Training and Continuing Education

Boolean Arrays as Masks

— In the previous slides we looked at aggregates computed directly on Boolean arrays

Once we have a Boolean array from lets say a comparison, we can select the entries that meet the
condition by using the Boolean array as a mask

X X<5 X[x<5]
3 1 5 True True
10 | 32 | 100 ‘False False

-1 3 4 True True True

v

3,1,-1,3,4

{Live Coding} |

I Lets checkout more examples using this masking operation

Python - Data Analysis Essentials | David Pinezich Slide 103

: Universitat
2 se o UZH
<sy Lurich

IT Training and Continuing Education

Checkpoint 3

- You read and ran the cells in the Numpy notebook up until Reading and Writing Data with Numpy
- You solved the Numpy exercises 20-60 (including 60)

Python - Data Analysis Essentials | David Pinezich Slide 104

Universitat
Zuirich™

IT Training and Continuing Education

Reading and Writing Data with NumPy

— We can use the np.savetxt() function to save NumPy data to a file
— We can use the np.loadtxt () function to load data from a file
— Remember: We can only store elements of a single type in a NumPy array
— Use the shell commands !1s, !pwd, and ! cd to navigate the file system if necessary

Lets checkout how we can read and write files with NumPy {Live Coding}

Python - Data Analysis Essentials | David Pinezich Slide 105

Universitat
Zuirich™

IT Training and Continuing Education

Comma-Separated Values (CSV)

— CSV files are simplified spreadsheets stored as plaintext files

Excel for example allows to export spreadsheets as CSV files

— (CSVfiles

Don't have types for their values — everything is a string
Don't have settings for font size or color

Can't specify cell width and heights

And more

Python - Data Analysis Essentials | David Pinezich

Slide 106

Universitat
Zuirich™

IT Training and Continuing Education

Comma-Separated Values (CSV)

— Each line in a CSV file represents a row in the spreadsheet, and commas separate the cells in the row:

4/5/2015 13:34,Apples,73
4/5/2015 3:41,Cherries, 85
4/6/2015 12:46,Pears,14

4/8/2015 8:59,0ranges,52

Python - Data Analysis Essentials | David Pinezich Slide 107

Universitat
Zuirich™

IT Training and Continuing Education

Reading CSV Data with NumPy

— Some CSV data contains a mix between numbers and strings, or might have missing values
— We can use the np.genfromtxt () function to load mixed data from such a file into a NumPy array

| Lets import the FIFA 2019 CSV file using numpy . genfromtxt () {Live Coding} |
https://www.kaggle.com/karangadiya/fifal9

Python - Data Analysis Essentials | David Pinezich Slide 108

https://www.kaggle.com/karangadiya/fifa19

Universitat

Zurich™

IT Training and Continuing Education

Learning Objectives

— You know:

How to create one- and two-dimensional NumPy arrays
How to access these arrays

How to use the aggregation functions

How to work with Boolean arrays

How to read and write files with NumPy

Python - Data Analysis Essentials | David Pinezich

Slide 109

Universitat
Zuirich™

IT Training and Continuing Education

Questions

— If you have any questions, information, or more about any topic of today's course, feel free to write me at
david.pinezich@gmail.com

Python - Data Analysis Essentials | David Pinezich Slide 110

mailto:david.pinezich@gmail.com

