2ig 2\ Universitat
oEg se o UZH
<sy Lurich

IT Training and Continuing Education

Python - Data Analysis Essentials

David Pinezich
david.pinezich@amail.com

18.05.2019 Slide 1

mailto:david.pinezich@gmail.com

Universitat
Zuirich™

IT Training and Continuing Education

Timeline

Part 1: Introduction, Course objectives, Python basics, Setting up Pycharm, Jupyter, Getting started with
numpy theory(array creation, slicing, utility functions) and exercises(puzzles)

Part 2: Continue Numpy theory(concatenating, splitting, universal functions, aggregations, boolean masking,
reading and writing data) and exercises(puzzles)

Part 3: Pandas theory(series and dataframe creation, basic dataframe and series methods, data selection,
universal functions) and exercises(puzzles)

Part 4. Continue Pandas theory(Reading and writing data, aggregations, filters, groupby) and
exercises(finish puzzles, 3 case studies), visualizations using Seaborn, small visualization example of covid

Slide 2

IT Training and Continuing Education

Using Pandas to Get More out of Data

Universitat
Zuirich™

IT Training and Continuing Education

Learning Objectives

— You know:
— What a Series and DataFrame is
— How to construct a Series and DataFrame from scratch
— How to import data using NumPy and/or Pandas
— How to aggregate, transform, and filter data using Pandas

Python - Data Analysis Essentials | David Pinezich Slide 4

Universitat
Zuirich™

IT Training and Continuing Education

Pandas

— Pandas is a newer package built on top of NumPy
— Pandas documentation: https://pandas.pydata.org/pandas-docs/stable/
— NumPy is very useful for numerical computing tasks
— Pandas allows more flexibility: Attaching labels to data, working with missing data, etc.

In [1]: import pandas as pd JUPYTER NB

pd. version

out [1]: '@.23.4°

— Note: We are going to use the pd alias for the pandas module in all the code samples on the following
slides

Python - Data Analysis Essentials | David Pinezich Slide 5

https://pandas.pydata.org/pandas-docs/stable/

Universitat
Zuirich™

IT Training and Continuing Education

The Pandas Objects

— Pandas objects are enhanced versions of NumPy arrays: The rows and columns are identified with
labels rather than simple integer indices

— Series object: A one-dimensional array of indexed data
— DataFrame object: A two-dimensional array with both flexible row indices and flexible column names

Python - Data Analysis Essentials | David Pinezich Slide 6

Universitat
Zuirich™

IT Training and Continuing Education

The Pandas Series Object

— APandas Series object is a one-dimensional array of indexed data
— NumPy array: has an implicitly defined integer index
— ASeries object uses by default integer indices:

In [1]: datal = pd.Series([100,200,300])

— ASeries object can have an explicitly defined index associated with the values:

In [2]: data2 = pd.Series([100,200,300], index=["a","b","c"])

— We can access the index labels by using the index attribute:

In [2]: d2ind = data2.index

Python - Data Analysis Essentials | David Pinezich

JUPYTER NB

JUPYTER NB

JUPYTER NB

Slide 7

Universitat
Zuirich™

IT Training and Continuing Education

The Pandas Series Object

— A Python dictionary maps arbitrary keys to a set of arbitrary values

— ASeries object maps typed keys to a set of typed values

"Typed" means we know the type of the indices and elements beforehand, making Pandas Series
objects much more efficient than Python dictionaries for certain operations

— We can construct a Series object directly from a Python dictionary:

In [1]: data_dict = pd.Series({"c":123,"a":30,"b":100}) JUPYTER NB

— Note: The index for the Series is drawn from the sorted keys

Python - Data Analysis Essentials | David Pinezich Slide 8

Universitat
Zuirich™

IT Training and Continuing Education

The Pandas DataFrame Object

— ADataFrame object is an analog of a two-dimensional array both with flexible row indices and flexible
column names
— Both the rows and columns have a generalized index for accessing the data

— The row indices can be accessed by using the index attribute
— The column indices can be accessed by using the columns attribute

Python - Data Analysis Essentials | David Pinezich Slide 9

Universitat
Zuirich™

IT Training and Continuing Education

Constructing DataFrame Objects

— You can think of a DataFrame as a sequence of aligned Series objects, meaning that each column of a
DataFrame is a Series

In [1]: df = pd.DataFrame({"coll":seriesl, "col2":series2, ...}) JUPYTER NB

Python - Data Analysis Essentials | David Pinezich Slide 10

Universitat
Zuirich™

IT Training and Continuing Education

Constructing DataFrame Objects

— There are multiple ways to construct a DataFrame object
— From a single Series object:
In [1]: pd.DataFrame(population, columns=["population"])
— From a list of dictionaries:
In [2]: pd.DataFrame([{'a': 1, 'b': 2}, {'b': 3, 'c': 4}])
— From a dictionary of Series objects:

In [3]: pd.DataFrame({'population': population, 'area': area})
— From a two-dimensional NumPy array:

In [4]: pd.DataFrame(np.random.rand(3, 2),
columns=['foo', 'bar’'],
index=["a', 'b', 'c'])

Python - Data Analysis Essentials | David Pinezich

JUPYTER NB

JUPYTER NB

JUPYTER NB

JUPYTER NB

Slide 11

Universitat
Zuirich™

IT Training and Continuing Education

Data Selection in Series

— Series as a dictionary:
— Select elements by key, e.g. data["a"']
— Modify the Series object with familiar syntax, e.g. data['e'] = 100
— Check if a key exists by using the in operator
— Access all the keys by using the keys () method
— lterate over (column name, Series) pairs by using the items () method

Python - Data Analysis Essentials | David Pinezich Slide 12

Universitat
Zuirich™

IT Training and Continuing Education

Data Selection in Series

— Series as one-dimensional array:
Select elements by the implicit integer index, e.g. data[0]

Select elements by the explicit index, e.g. data["a’]
Select slices (by using an implicit integer index or an explicit index)

Important. Slicing with an explicit index (e.g., data["'a’: "'c"]) will include the final index in the
slice, while slicing with an implicit index (e.g., data[@:3]) will exclude the final index from the

slice
— Use masking operations, e.g., data[data < 3]

Python - Data Analysis Essentials | David Pinezich Slide 13

2ig 2\ Universitat
Ffle se o UZH
<sy Lurich

IT Training and Continuing Education

Data Selection in DataFrame

— DataFrame as a dictionary of related Series objects:
— Select Series by the column name, e.g. df["area’]
— Modify the DataFrame object with familiar syntax, e.g. df['c3'] = df['c2']/ df['cl1l']

Python - Data Analysis Essentials | David Pinezich Slide 14

Universitat
Zuirich™

IT Training and Continuing Education

Data Selection in DataFrame

— DataFrame as two-dimensional array:
— Access the underlying NumPy data array by using the values attribute

— df.values[0] will select the first row
— Use the iloc indexer to index, slice, and modify the data by using the implicit integer index

— Use the 1loc indexer to index, slice, and modify the data by using the explicit index

Python - Data Analysis Essentials | David Pinezich Slide 15

Universitat
Zuirich™

IT Training and Continuing Education

Ufuncs and Pandas

— Pandas is designed to work with Numpy, thus any NumPy ufunc will work on Pandas Series and
DataFrame objects

— Index preservation: Indices are preserved when a new Pandas object will come out after applying ufuncs
— Index alignment. Pandas will align indices in the process of performing an operation
— Missing data is marked with NaN ("Not a Number")

— We can specify on how to fill value for any elements that might be missing by using the optional
keyword fill_value: A.add(B, fill value=0)

— We can also use the dropna() method to drop missing values
— Note: Any of the ufuncs discussed for NumPy can be used in a similar manner with Pandas objects

Python - Data Analysis Essentials | David Pinezich Slide 16

2ig 2\ Universitat
Ffle se o UZH
<sy Lurich

IT Training and Continuing Education

Ufuncs: Operations Between DataFrame and Series

— Operations between a DataFrame and a Series are similar to operations between a two-dimensional
and one-dimensional NumPy array (e.g., compute the difference of a two-dimensional array and one of
its rows)

Python - Data Analysis Essentials | David Pinezich Slide 17

Yniversitat”
Zurich™

IT Training and Continuing Education

Checkpoint 1

- Read and run the Pandas notebook until Reading and Writing Data with Pandas
- Solve the Pandas puzzles exercises until exercise 14 (without 14)

Python - Data Analysis Essentials | David Pinezich Slide 18

IT Training and Continuing Education

Reading (and Writing) Data with Pandas

Universitat
Zuirich™

IT Training and Continuing Education

File Types

— We will work with plaintext files only in this session; these contain only basic text characters and do not
include font, size, or colour information

— Binary files are all other file types, such as PDFs, images, executable programs etc.

Python - Data Analysis Essentials | David Pinezich Slide 20

Universitat
Zuirich™

IT Training and Continuing Education

The Current Working Directory

— Every program that runs on your computer has a current working directory
— It's the directory from where the program is executed / run
— Folder is the more modern name for a directory
— The root directory is the top-most directory and is addressed by /
— Adirectory mydirl in the root directory can be addressed by /mydirl
— Adirectory mydir2 within the mydir1 directory can be address by /mydir/mydir2, and so on

Python - Data Analysis Essentials | David Pinezich Slide 21

Universitat
Zuirich™

IT Training and Continuing Education

Absolute and Relative Paths

— An absolute path begins always with the root folder, e.g. /my/path/...
— Avrelative path is always relative to the program's current working directory

If a program's current working directory is /myprogram and the directory contains a folder files with
a file test.txt, then the relative path to that file is just files/test.txt

— The absolute path to test.txt would be /myprogram/files/test.txt (note the root folder /)

Python - Data Analysis Essentials | David Pinezich Slide 22

Universitat
Zuirich™

IT Training and Continuing Education

Reading Data with Pandas

— Pandas provides the pandas.read_csv() function to load data from a CSV file (or a file that uses a
different delimiter than a comma)

The path you specify doesn't have to be on your hard disk; you can also provide the URL to file to
read it directly into a Pandas object

We can set the optional argument error_bad_lines to False so that bad lines in the file get omitted
and do not cause an error

Checkout the documentation to learn more about the optional arguments:
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

Python - Data Analysis Essentials | David Pinezich Slide 23

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

Universitat
Ziirich™

IT Training and Continuing Education

Some Interesting Data Sources

— Federal Statistical Office:
https://www.bfs.admin.ch/bfs/en/home/statistics/catalogues-databases/data.html

— OpenData: hitps://opendata.swiss/en/

— OpenData Zurich: hitps://www.stadt-zuerich.ch/opendata.secure.html

— United Nations: http://data.un.org/

— World Health Organization: hitp://apps.who.int/gho/data/node.home
— World Bank: hitps://data.worldbank.ora/
— Kaggle: https://www.kaggle.com/datasets

— Cern: http://opendata.cern.ch/

— Nasa: htips://data.nasa.gov/
— FiveThirtyEight: hitps://github.com/fivethirtyeight/data

Python - Data Analysis Essentials | David Pinezich Slide 24

https://www.bfs.admin.ch/bfs/en/home/statistics/catalogues-databases/data.html
https://opendata.swiss/en/
https://www.stadt-zuerich.ch/opendata.secure.html
http://data.un.org/
http://apps.who.int/gho/data/node.home
https://data.worldbank.org/
https://www.kaggle.com/datasets
http://opendata.cern.ch/
https://data.nasa.gov/
https://github.com/fivethirtyeight/data

il Universitat
<sy Lurich

IT Training and Continuing Education

Exporting DataFrame Objects to a File

We can use the pandas.DataFrame.to_csv() method to export a DataFrame to a CSV file
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to csv.html

— Overview of all the DataFrame methods to import and export data:
https://pandas.pydata.org/pandas-docs/stable/api.html#id12

Python - Data Analysis Essentials | David Pinezich Slide 25

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/api.html#id12

IT Training and Continuing Education

Aggregating and Grouping Data in Pandas

Universitat
Zuirich™

IT Training and Continuing Education

Simple Aggregation in Pandas

— As with one-dimensional NumPy array, for a Pandas Series the aggregates return a single value
— For a DataFrame, the aggregates return by default results within each column
— Pandas Series and DataFrames include all of the common NumPy aggregates

— In addition, there is a convenience method describe() that computes several common aggregates
for each column and returns the result

Python - Data Analysis Essentials | David Pinezich Slide 27

Universitat
Zuirich™

IT Training and Continuing Education

Split, Apply, Combine

— Split: Break up and group a DataFrame depending on the value of the specified key
— Apply: Apply some function, usually an aggregate, transformation, or filtering, within the individual groups

— Combine: Merge the results of these operations into an output array

Python - Data Analysis Essentials | David Pinezich Slide 28

Universitat
Zuirich™

IT Training and Continuing Education

Split, Apply, Combine

— Pictured on the right you see an example Split —
where in the apply step we key datal i
use a summation aggregation: Input NE I > key |data
— The groupBy () method of DataFrames key | data A4 l A5
can compute the most basic b Combine
split-apply-combine operations key | data
bl fey Joat key |data AlS
C|3]|—/» | B2 > T g T
Al 4 B |5 =
B S5
(o \ key dataI " /
|3]—> o
Lets check out the groupBy () method {Live Coding} cls I

Python - Data Analysis Essentials | David Pinezich Slide 29

Universitat
Zuirich™

IT Training and Continuing Education

The GroupBy Object

— The groupBy () method returns a DataFrameGroupBy: It's a special view of the DataFrame

— Helps get information about the groups, but does no actual computation until the aggregation is
applied ("lazy evaluation”, i.e. evaluate only when needed)

— Apply an aggregate to this DataFrameGroupBy object: This will perform the appropriate
apply/combine steps to produce the desired result

— You can apply any Pandas or NumPy aggregation function
— Other important operations made available by a GroupBy are filter, transform, and apply

Python - Data Analysis Essentials | David Pinezich Slide 30

Universitat
Zuirich™

IT Training and Continuing Education

Column Indexing and Iterating Over Groups

— The GroupBy object supports column indexing in the same way as the DataFrame, and returns a
modified GroupBy object

— The GroupBy object also supports direct iteration over the groups, returning each group as a Series or
DataFrame

Python - Data Analysis Essentials | David Pinezich Slide 31

Universitat
Zuirich™

IT Training and Continuing Education

Aggregate, Filter, Transform, and Apply

Aggregate: The aggregate() method can compute multiple aggregates at once
Filter: The filter () method allows you to drop data based on group properties

— Note: filter() takes as an argument a function that returns a Boolean value specifying whether the
group passes the filtering

Transformation: \While aggregation must return a reduced version of the data, transform() can return
some transformed version of the full data to recombine (meaning that we still have the same number of

entries before and after the transformation)

Apply: The apply () method lets you apply an arbitrary function to the group results. The function should
take a DataFrame, and return either a Pandas object or a scalar

Python - Data Analysis Essentials | David Pinezich Slide 32

Universitat
Zuirich™

IT Training and Continuing Education

Checkpoint 2

- Finish reading and running the Pandas notebook
- Finish the Pandas Puzzle exercises

Python - Data Analysis Essentials | David Pinezich Slide 33

Universitat
Zuirich™

IT Training and Continuing Education

Learning Objectives

— You know:
— What a Series and DataFrame is
— How to construct a Series and DataFrame from scratch
— How to import data using NumPy and/or Pandas
— How to aggregate, transform, and filter data using Pandas

Python - Data Analysis Essentials | David Pinezich Slide 34

Universitat

‘i UZH
gy Zurich

IT Training and Continuing Education

Addendum: Working with Files in Python

, Universitat
<sy Lurich

IT Training and Continuing Education

Opening Files with the open() Function

— Open a file with the open() function by providing a string path indicating the file you want to open
— The path can be an absolute or a relative path

file = open("/path/to/my/file.txt") CODE

— Typed like this, open() will open the file in the read mode, meaning we only can read data from the
file

— open() returns a File object, which represents a file on your computer

(it's simply another type of value in Python, much like lists and dictionaries)
— We can now call methods on the File object to read its content for example

Python - Data Analysis Essentials | David Pinezich Slide 36

Universitat
Zuirich™

IT Training and Continuing Education

Reading the Contents of Files

— We can use the File object's read() method to read the entire contents of a file as a string value

— Lets assume we have a plaintext file located at /path/to/file.txt with Well, hello there! asits
content. Then:

file = open("/path/to/file.txt") |\ Content of the file R

print(file.read())

Python - Data Analysis Essentials | David Pinezich Slide 37

Universitat
Zuirich™

IT Training and Continuing Education

Reading the Contents of Files

— Alternatively, we can use the File object's readlines() method to get a list of string values from the
file, one string for each line of text

— Lets assume we have a plaintext file located at /path/to/newFile.txt with the following content:

First line
Second line
Third line

CODE OUTPUT

file = open("/path/to/newFile.txt") ["First line\n', 'Second line\n',
'"Third line\n']

print(file.readlines())

18.05.2019 Python - Data Analysis Essentials | David Pinezich Slide 38

Universitat
Zuirich™

IT Training and Continuing Education

Writing to Files

— We met the read mode in the previous slides
— There exist two more modes: the write mode and the append mode
— Write mode will overwrite the existing file and start from scratch (so watch out!)
— We pass "w" as the second argument to the open() function to open the file in write mode

— Append mode will append text to the end of the existing file
We pass "a" as the second argument to the open() function to open the file in append mode

Python - Data Analysis Essentials | David Pinezich Slide 39

Universitat
Zuirich™

IT Training and Continuing Education

Writing to Files

If the filename to open() does not exist, both write and append mode will create a new, blank file

— After reading or writing a file, call the close() method before opening a file again

Once we have a file opened in one of the writing modes, we can use the File object's write() method
and pass it a string argument to write it into the file

— The write() method will then return the number of bytes written to the file

Python - Data Analysis Essentials | David Pinezich Slide 40

Universitat
Zuirich™

IT Training and Continuing Education

Reader Objects

— We need to create a Reader object to read data from a CSV file with the csv module
— The Reader object lets you iterate over lines in the CSV file

Python - Data Analysis Essentials | David Pinezich Slide 41

Universitat
Zuirich™

IT Training and Continuing Education

Reader Objects

. CODE
import csv

file = open("example.csv")
exReader = csv.reader(file)
data = list(exReader)
print(data)

INTERPRETER

[['4/5/2015 13:34', 'Apples', '73'], ouTEeT
['4/5/2015 3:41', 'Cherries', '85'],

['4/6/2015 12:46', 'Pears', '14'],

['4/8/2015 8:59', 'Oranges', '52']]

Python - Data Analysis Essentials | David Pinezich Slide 42

Universitat
Zuirich™

IT Training and Continuing Education

Reading Data from Reader Objects in a for Loop

For large files it is disadvantageous to load the entire file into memory at once
We are going to use the Reader object in a for loop to iterate over each row of the CSV file, without

having to load the entire file into memory
Note: The Reader object can be looped over only once. You must create the Reader object anew if

you want to reread the CSV file

Python - Data Analysis Essentials | David Pinezich Slide 43

Universitat
Zuirich™

IT Training and Continuing Education

Reading Data from Reader Objects in a for Loop

. CODE
import csv
file = open("example.csv")
exReader = csv.reader(file)
for row in exReader:
print(str(exReader.line num) + ": " + str(row))
OUTPUT

['4/5/2015 13:34', 'Apples', '73']
['4/5/2015 3:41', 'Cherries', '85']
['4/6/2015 12:46', 'Pears', '14']

['4/8/2015 8:59', 'Oranges', '52']

AwNnpR

Python - Data Analysis Essentials | David Pinezich Slide 44

Universitat
Zuirich™

IT Training and Continuing Education

Writer Objects

— We can use a Writer object to write data to a CSV file
— We can pass a list to the writerow() method with the data
— Each value in the list is placed in its own cell in the output CSV file

: CODE
import csv

12/10/2017 14:45,Fries,9.5
file = open("output.csv”, "w", newline="") 11/09/2018 10:16,Bread,1.2
exWriter = csv.writer(file)
exWriter.writerow(["12/10/2017 14:45", "Fries", "9.5"])
exWriter.writerow(["11/09/2018 10:16", "Bread", "1.2"])

file.close()

Python - Data Analysis Essentials | David Pinezich Slide 45

Universitat
Zuirich™

IT Training and Continuing Education

The delimiter and lineterminator Keyword Arguments

If you want to separate cells with a tab character instead of a comma and you want the rows to be
double-spaced, we can use the delimiter and lineterminator keyword arguments with the reader()

and writer() methods
The delimiter is the character that appears between cells on a row

— By default the delimiter is a comma ,
The line terminator is the character that comes at the end of a row

— By default the line terminator is a newline

import csv

file = open("example.csv")
exReader = csv.reader(file, delimiter="\t", lineterminator="\n")

Python - Data Analysis Essentials | David Pinezich Slide 46

Universitat
Zuirich™

IT Training and Continuing Education

Checkpoint 3

- Finish the Pandas dataset exercises

Python - Data Analysis Essentials | David Pinezich Slide 47

2ig 2\ Universitat
Ffle se o UZH
<sy Lurich

IT Training and Continuing Education

Please Save Your Progress

Python - Data Analysis Essentials | David Pinezich Slide 48

Universitat
Zuirich™

IT Training and Continuing Education

Questions

— If you have any questions, information, or more about any topic of today's course, feel free to write me at
david.pinezich@gmail.com

Python - Data Analysis Essentials | David Pinezich Slide 49

mailto:david.pinezich@gmail.com

2ig 2\ Universitat
Ffle se o UZH
<sy Lurich

IT Training and Continuing Education

References

— Course content:

— Al Sweigart, "Automate the Boring Stuff with Python"
https://automatetheboringstuff.com/

— Jake VanderPlas, "Python Data Science Handbook"
https://jakevdp.qithub.io/PythonDataScienceHandbook/

Python - Data Analysis Essentials | David Pinezich Slide 50

https://automatetheboringstuff.com/
https://jakevdp.github.io/PythonDataScienceHandbook/

