
IT Training and Continuing Education

Python - Data Analysis Essentials

David Pinezich
david.pinezich@gmail.com

Slide 1

IT Training and Continuing Education

It's nice to have you here today

Python - Data Analysis Essentials | David Pinezich Slide 2

IT Training and Continuing Education

About Me

– BSc and MSc SoftwareSystems @UZH

– Work Experience

– Paul Scherrer Institute (PSI)

– Architonic AG

– ti&m AG

– Current:

– Helsana Insurances AG

– Kantonsschule Baden

– Programming Experience

– Current Projects

Slide 3Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

About You

– Your major / occupation

– Your programming experience

– Your goals for this course

Slide 4Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Learning Objectives for This Course

– The main goal is to get a better picture on the essential Python libraries (NumPy and pandas) for
preparing, cleaning, transforming and aggregating your data for analysis

– You get IPython notebooks that contain the slides' content (one notebook for the NumPy part and one for
pandas part), so you can experiment with all the material at home

– Learn how to visualize different datasets using Seaborn

Slide 5Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Please Feel Free to Always Ask Questions

– Questions are a natural part of the learning process and you're always allowed to ask them
– Asking questions is an integral part of this course
– Even if you have a feeling that you're question might "not be good enough," or you don't understand a

concept "even if it should be easy to do so," please ask the question nonetheless
– For one, it gives me the possibility to try and come up with better / clearer explanations

– In case you have any questions after the course, please feel free to contact me via email at
david.pinezich@gmail.com or via Teams directly

Slide 6Python - Data Analysis Essentials | David Pinezich

mailto:david.pinezich@gmail.com

IT Training and Continuing Education

Learning By Doing (and Making Errors)

– Programming is best learned by doing
– Don't be afraid to try stuff out in Python and make errors

– Errors are a vital part of the learning process and help you understand situations much better

– If you should get stuck on an error during a programming exercise, please always feel free to call for my
help or the help of fellow students

– Also, don't be afraid to use pen and paper to solve the exercises or when you are trying to understand a
specific concept
– For one, it helps a lot to step away from the computer from time to time
– It also helps a lot to write down the immediate steps when trying to understand a complicated

concept

Slide 7Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Feedback

– I'm very thankful for all the feedback I get (be it positive or negative), since I want you to feel comfortable
and I love to improve my courses and my teaching skills

– Course is moving too fast?

– I'm not speaking clearly enough?

– Please feel free to inform me about anything whenever you feel like it ☺

Slide 8Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Checkpoint System

– Just sticking to a rigid schedule makes no sense

– That is why we will use a checkpoint system
– After some theory you will be presented with a checkpoint

– When a majority of the people solved the checkpoint

– Please raise your hand in Teams to indicate this!

– We will continue with the course/look at the solutions together

– If you finished the checkpoint, feel free to look at the next slides/exercises or just do something else
private. But please have Teams open somewhere, so that you notice when we continue again.

Slide 9Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Timeline

Part 1: Introduction, Course objectives, Python basics, Setting up Pycharm, Jupyter, Getting started with
numpy theory (array creation, slicing, utility functions) and exercises(puzzles)

Part 2: Continue Numpy theory (concatenating, splitting, universal functions, aggregations, boolean
masking, reading and writing data) and exercises (puzzles)

Part 3: Pandas theory (series and dataframe creation, basic dataframe and series methods, data selection,
universal functions) and exercises (puzzles)

Part 4: Continue Pandas theory (Reading and writing data, aggregations, filters, groupby) and exercises
(finish puzzles, 3 case studies), visualizations using Seaborn, small visualization example of covid

Slide 10Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Course Outline for Today

1. Course Organization

2. An Introduction to IPython and Jupyter

3. Setting up Pycharm

4. Important Basics of the Python Programming Language

5. Storing and Operating on Data with NumPy

Slide 11Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Course Organization

IT Training and Continuing Education

Course Organization

– You need to attend 3 of 4 sessions to receive your certificate

– If you will miss an appointment let me know, we will find a solution :-)

– I will do breaks every 50 minutes (+/- 5 minutes normally)

– Please ask questions if you are stuck - being stuck at the set up phase is a huge deal breaker

Slide 13Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

An Introduction to IPython and Jupyter

IT Training and Continuing Education

Python, the Programming Language

– Goal: we want be able to give the computer instructions to do specific things, e.g. reading a file,
computing the sum between two numbers, and so on

– Python is a formal language which we humans can read, type, and use to formulate instructions for the
computer

– "Formal language" means that there exists a specific set of rules we have to follow when writing code
with it

– The Python interpreter then translates our code to machine code, which can be directly executed by our
computer

– The interpreter is the interface between a human and a computer

Seite 15Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Python Code Is Often Quite Readable

Slide 16

– Idea for a program: – Corresponding Python code:

number_1 = 2
number_2 = 10
number_3 = 18.3
result = number_1 * number_2 + number_3
print(result)

CODE1. Number 1 has value 2
2. Number 2 has value 10
3. Number 3 has value 18.3
4. Compute Number 1 * Number 2 + Number 3
5. Print the result

IDEA

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Python Code Is Portable

– Python code can be interpreted and run / executed using any current operating system, e.g. Windows,
OS X, and Linux

Slide 17Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

The Python Ecosystem Is Huge

– Python already comes with a lot
of useful tools and libraries

– Nonetheless, there also exist
thousands of third-party modules
and libraries which can be used
to accomplish various tasks,
NumPy and Pandas being just
two of them
– https://awesome-python.com/

Slide 18Python - Data Analysis Essentials | David Pinezich

https://awesome-python.com/

IT Training and Continuing Education

IPython: Interactive Python

– Interactive computing in Python

– Offers introspection: We can inspect values and errors, time our functions, and more

– Offers tab completion and history

– Offers a browser-based notebook interface with support for code, text, mathematical expressions and
more (it's called Jupyter nowadays)

– A notebook runs Python / IPython statements

Slide 19Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

IPython: Interactive Python

– We are going to run all the code in this course with IPython

– IPython supports Python 3.*

Slide 20Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Help and Documentation in IPython

– How do I call a function? What arguments and options does It have?

– What does the source code of this Python value / object look like?

– What is in this package I imported?

– What variables / attributes or methods does this value / object have?

Slide 21Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Help and Documentation in IPython

– We can access documentation with ?

– This notation works for about anything, including object methods and functions (as we will see later)

Slide 22

In [1]: print?
Docstring:
print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

Prints the values to a stream, or to sys.stdout by default.

 IPYTHON

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Help and Documentation in IPython

– We can access source code with ??

Slide 23

In [1]: def myfun(lst):
 ...: for e in lst:
 ...: print(e)
 ...:

In [2]: myfun??
Signature: myfun(lst)
Docstring: <no docstring>
Source:
def myfun(lst):
 for e in lst:
 print(e)
File: ~/<ipython-input-9-42be41fecbd8>
Type: function

 IPYTHON

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Shell Commands in IPython

– The shell is a way to interact textually with your computer

– Operating systems existed long before graphical user interfaces as we know and use today

– We can create folders, files, copy and delete them, and more with a shell

– Basically, we can submit a lot of commands via shell to the computer

Slide 24Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Shell Commands in IPython

– Common shell commands

– pwd: Print the working directory (where we currently are in the file system)

– ls: List working directory contents

– cd: Change directory

– mkdir: Make new directory

– In IPython we can use these shell commands by prefixing them with !

Slide 25Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Help on Methods in IPython

– We can check the documentation for specific methods with ? in IPython

– IPython also provides tab-completion, meaning it will show all available methods for a specific value

Slide 26

In [1]: lst = [1,2,3]
In [2]: lst.index?
Docstring:
L.index(value, [start, [stop]]) -> integer -- return first index of value.
Raises ValueError if the value is not present.

 IPYTHON

• Let's check out the tab-completion in IPython {Live Coding}

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Running External Code with %run

– We can use a text editor to write code and use IPython to run it with %run

Slide 27

def fun(lst):
 for e in lst:
 print(e)

fun([1,2,3,4])

my_print.py In [1]: %run my_print.py
1
2
3
4

 IPYTHON

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Setting up Pycharm

IT Training and Continuing Education

Download the repository

Slide 29

Git: git clone https://gitlab.uzh.ch/zi-it-training/appd/appd_dp_hs22.git

Zip: https://gitlab.uzh.ch/zi-it-training/appd/appd_dp_hs22/-/archive/main/appd_dp_hs22-main.zip

Python - Data Analysis Essentials | David Pinezich

https://gitlab.uzh.ch/zi-it-training/appd/appd_dp_hs22.git
https://gitlab.uzh.ch/zi-it-training/appd/appd_dp_hs22/-/archive/main/appd_dp_hs22-main.zip

IT Training and Continuing Education

Git

Slide 30Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Zip

Slide 31Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Open unzipped folder

Slide 32Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Preparation (ZIP & GIT)

Slide 33Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Settings

Windows: File->Settings
Mac: Pycharm->Preferences

Slide 34Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Project interpreter

Version 3.6+ works for sure,
But other version should also work

Slide 35Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Create environment

Select your python interpreter

Slide 36Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Add packages

Slide 37Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Install packages

Install following packages:

– jupyter
– numpy
– pandas
– xlrd

Slide 38Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Checkpoint 1
- Pycharm is set up
- You have the course

package downloaded
- The virtual

environment setup
with the needed
packages

- You can run all the
cells in the Numpy
Notebook

Slide 39Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Important Basics of the Python Programming Language
 (…at least for this course)

IT Training and Continuing Education

Learning Objectives

– You know
– what values, variables and statements are
– about data types like int, float, str, list, tuple, dict
– how to use lists and dictionaries and their differences

Slide 41Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Values and Data Types

– Values are fundamental things like the number 2 or 1.234, or the string Hello
– A data type is a category for values, and a value always belongs to a single data type

– Integer data type: -1, -100, 0, 12, 34
– Float data type: -1.324, 0.14123, 10.1, 100.0
– String data type: ‘Hello’, ‘Word’, ‘Spaces are included’
– List data type: [1,2,3,4]
– Tuple data type: ("A", "B", "C")
– Dictionary data type: {"k1": 1, "k2": 132}

Slide 42Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Storing Values in Variables

– A variable is like a box where you can store a single value
– Assigning a value to a variable is done with an assignment statement:

– myNumber is the variable name, and 123 is the value stored within this variable
– Since a variable stores a value, a variable also belongs to a data type,

which we can query with the type function:

Slide 43

myNumber = 123
CODE

type(myNumber)
CODE

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Statements, Expressions, and Operators

– A statement is an instruction that the Python interpreter can execute
– An expression is a combination of values, variables, operators, and calls to functions

– Expressions need to be evaluated
– The evaluation of an expression always produces a single value

– An operator is a special token that represents a computation like an addition, multiplication, and division
– Values that the operator works on are called operands

Slide 44Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

The List Data Type

1. Initialization of a list: (Note: A list can contain elements of different data types)

2. Accessing elements: (Note: First element in the list is at the index 0)

3. Changing values: (Note: A Python list is a mutable data structure)

03.11.2018 Seite 45

lst = ["one", "two", 3, 4, 5]
CODE

el1 = lst[0]
eln = lst[-1]

CODE

lst[0] = "abc"
lst[4] = 423.132

CODE

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

The List Data Type

4. Accessing slices: (Note: The slice goes up to, but will not include, the value at the second index)

5. Removing elements: (Note: Removing an element changes the underlying list structure)

6. Iterating over a list's elements:

7. Check if a value exists in a list:

Seite 46

sl1 = lst[2:3]
sl2 = lst[1:]

CODE

del lst[2]
CODE

for el in lst:
 print(el)

CODE

val_exists = "one" in lst
CODE

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

The Tuple Data Type

1. Initialization of a tuple: (Note: A tuple can contain elements of different data types)

2. Accessing elements: (Note: First element in the tuple is at the index 0)

3. We cannot change elements of a tuple, since it's an immutable data structure.
What we can do instead is copy its elements into a mutable data structure:

Seite 47

tpl = (1, 2, 3, "four", 5)
CODE

t1 = tpl[0]
eln = tpl[-1]

CODE

lst = list(tpl)
lst[0] = 34
lst[4] = "abc"

CODE

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

The Tuple Data Type

4. Accessing slices: (Note: The slice goes up to, but will not include, the value at the second index)

5. We cannot remove elements from a tuple, since it's an immutable data structure.
6. Iterating over a tuple's elements:

7. Check if a value exists in a tuple:

Seite 48

sl1 = tpl[2:3]
sl2 = tpl[1:]

CODE

for el in tpl:
 print(el)

CODE

val_exists = 1 in tpl
CODE

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

The Dictionary Data Type

1. Initialization of a dictionary: (Note: all keys must be of the same data type; values can be anything)

2. Accessing values: (Note: We access a value by its corresponding key)

3. Changing values: (Note: A Python dictionary is a mutable data structure)

Seite 49

dct = {"k1": "v1", "k2": "v2"}
CODE

v1 = dct["k1"]
v2 = dct["k2"]

CODE

dct["k1"] = "v1new"
CODE

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

The Dictionary Data Type

4. Accessing slices is not possible, since the data type of the key is not always integer
5. Removing elements: (Note: Removing an element changes the underlying list structure)

6. Iterating over a list's key-value pairs:

7. Check if an entry exists for a specific key:

Seite 50

del dct["k1"]
CODE

for (k,v) in dct.items():
 print(k, ": ", v, sep="")

CODE

entry_exists = "k1" in dct

CODE

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Dictionaries vs. Lists

– Lists are ordered
– First item in a list is located at the index 0
– We can slice lists
– Trying to access an index that is out of range results in an error message

– Dictionaries are unordered
– There is no "first" item, since we can only access items using keys
– We cannot slice dictionaries
– Trying to access a key that does not exist results in an error message

Slide 51Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Dictionaries vs. Lists

– Lists are ordered; the order of the elements matters:

– Dictionaries are unordered; the order of the elements does not matter:

Slide 52

l1 = [1,2,3,4]
l2 = [2,1,3,4]

print(l1 == l2)

CODE
False

 OUTPUT

IN
TER

P.

d1 = {"a":13, "b":14}
d2 = {"b":14, "a":13}

print(d1 == d2)

CODE
True

 OUTPUT

IN
TER

P.

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Functions and Methods

IT Training and Continuing Education

Learning Objectives

– You know

– how to write a function

– how to call a method

– how to use tab-completion to help you with methods

– that different data types may provide different methods

Slide 54Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Functions

– A function is defined by using the def keyword
– The code in the block that follows the def statement is called the function body

– This code is only executed when the function gets called, not when it’s first defined
– The hello() after the function definition is a function call

– A function call is just a functions name followed by parentheses, possibly with some arguments in
between the parentheses

Slide 55

def hello():
 print('Hello World')

hello()

CODE

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Functions with Arguments

– We can define functions that take in arguments, which are typed between the parentheses
– For example, the print() function takes an argument, namely the string we want to have printed on

the screen

Slide 56

def hello(name):
 print('Hello, ' + name)

hello('Giuseppe')

CODE

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Functions with Return Values

– Functions can evaluate to a value, which is called the return value of the function
– For example, if we pass the argument 'Hello' to the len() function, it will evaluate to the integer

value 5, which is the length of the string we passed
– We can specify what a function should return by using the return statement followed by the value we

want to return:

– Note: Functions without return value always evaluate to None

Slide 57

def sqr(x):
 return x*x

sqr_of_two = sqr(2)
print(str(sqr_of_two))

CODE

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Methods

– A method is the same thing as a function, except it is called on a value
– Function call: my_fun(a,b,c)

– Method call: my_list.index("k")

– We called the index method on the value of my_list, which is of type list
– Each data type (str, list, dict, etc.) has its own set of methods

– The list data type has several useful methods for finding, adding, removing, and manipulating
values in a list

– A method always acts on the value it has been called on
– list1.index("k") => index("k") acts on the value of list1
– list2.index("e") => index("e") acts on the value of list2

Slide 58Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Finding a value in a List: The index() Method

– The list data type provides an index() method, to which we can pass a value. If that value exists in the
list, the index of the value is returned, else Python produces a ValueError error

Slide 59

n = ["one", "two", "three", "four"]

ind1 = n.index("two")
print("Index of 'two': " + str(ind1))

ind2 = n.index("five")

CODE
Index of 'two': 1

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: 'five' is not in list

 OUTPUT

IN
TER

PR
ETE

R
Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Adding Values to a List: The append() and insert() Methods

– We can add new values to a list by calling the append() and insert() methods
– The append() method call adds the argument to the end of the list
– The insert() method call requires two arguments: the first argument is the index for the new value, and

the second argument is the new value to be inserted

Slide 60Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

In-Place Changes

– Both the append() and insert() methods will change the list on which they're called on
– We call these kind of changes in-place changes

Slide 61Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Adding Values to a List: The append() and insert() Methods

– Lets append a new value at the end of a list:

Slide 62

alpha = ["a", "b", "c"]

alpha.append("d")

print(alpha)

CODE

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Adding Values to a List: The append() and insert() Methods

– Lets add a new element at index 1 of the list:

– Note: After adding the new element, all previously existing elements at index 1, 2, and above are moved
to the right. This can be a costly operation if we insert elements in very large lists like this

Slide 63

alpha = ["a", "b", "c"]

alpha.insert(1, "w")

print(alpha)

CODE

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Adding Values to a List: The append() and insert() Methods

– Note: It's not alpha = alpha.append("d") or alpha = alpha.insert(1, "w")
– Both functions do not return the modified list alpha (both calls evaluate to None)
– The list alpha is rather modified in place (a list is a mutable data type)

Slide 64Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Different Methods for Different Data Types

– Methods belong to a single data type
– append() and insert() are list methods and can be called only on lists, not on other values such as

strings or integers

Slide 65

num = 1023

What might happen here?
num.insert(1, "w")

CODE

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Removing Values from Lists (In-Place): The remove() Method

– We can pass a value we want to be removed to the remove() method of a specific list:

– Note: If you know the index of the value we want to remove, we can still use the del operator for the
removal; if you know the value, just use the remove() method

Slide 66

alpha = ["a", "b", "c"]

alpha.remove("a")

print(alpha)

CODE

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Sorting the Values in a List (In-Place): The sort() Method

– We can sort lists of strings or numbers by calling the sort() method on a specific list:

Slide 67

alpha = ["c", "a", "b"]
alpha.sort()
print(alpha)

num = [3.14, 10, 1, -23, 0.4]
num.sort()
print(num)

CODE
['a', 'b', 'c']
[-23, 0.4, 1, 3.14, 10]

 OUTPUT

IN
TER

PR
ETE

R
Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Learning Objectives

– You know

– how to write a function

– how to call a method

– how to use tab-completion to help you with methods

– that different data types may provide different methods

Slide 68Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Storing and Operating on Data with NumPy

IT Training and Continuing Education

Python Data Science Handbook

– This part of the course is heavily based on Jake Vanderplas' "Python Data Science Handbook"

– You can find the official online version here: https://jakevdp.github.io/PythonDataScienceHandbook/

– Repository with lots of Jupyter notebooks on the subject:
https://github.com/jakevdp/PythonDataScienceHandbook/tree/master/notebooks

Slide 70Python - Data Analysis Essentials | David Pinezich

https://jakevdp.github.io/PythonDataScienceHandbook/
https://github.com/jakevdp/PythonDataScienceHandbook/tree/master/notebooks

IT Training and Continuing Education

Learning Objectives

– You know:

– How to create one- and two-dimensional NumPy arrays

– How to access these arrays

– How to use the aggregation functions

– How to work with Boolean arrays

– How to read and write files with NumPy

Slide 71Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Autosave Your Notebook(Only needed if not working in Pycharm)

– Activate autosave for your current notebook by using %autosave:

– Only needed if not working in Pycharm. Pycharm saves everything automatically per default.

– Do not enable if working in Pycharm, since the Jupyter autosave function and the Pycharm autosave
function will interfere with each other.

Slide 72

In [1]: %autosave 30

 Autosaving every 30 seconds

 JUPYTER NB

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

NumPy: Numerical Python

– NumPy: Python library that adds support for large, multi-dimensional arrays and matrices, along with a
large collection of high-level mathematical functions to operate on these arrays

– NumPy documentation: https://docs.scipy.org/doc/
– Use your NumPy version number to access the corresponding documentation

– Note: We are going to use the np alias for the numpy module in all the code samples on the following
slides

Slide 73

In [1]: import numpy as np
 np.__version__

Out [1]: '1.15.4'

 JUPYTER NB

Python - Data Analysis Essentials | David Pinezich

https://docs.scipy.org/doc/

IT Training and Continuing Education

NumPy Arrays

– Python's vanilla lists are heterogeneous: Each item in the list can be of a different data type

– Comes at a cost: Each item in the list must contain its own type info and other information

– It is much more efficient to store data in a fixed-type array (all elements are of the same type)

– NumPy arrays are homogeneous: Each item in the list is of the same type

– They are much more efficient for storing and manipulating data

NOTE: Colloquially the terms array, vector, matrix have all the same meaning namely they denote a
np.array([1,2,3]). There are differences for the terms depending on the field(linear algebra, computer
science...), but for this course they all mean the same thing!

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

NumPy Arrays

– Use the np.array() method to create a NumPy array:

Slide 75

In [1]: example = np.array([0,1,2,5])
 example

Out [1]: array([1, 2, 3, 5])

 JUPYTER NB

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Multidimensional NumPy Arrays

–

Slide 76

In [1]: twodim = np.array([[1,2,3],
 [4,5,6],
 [7,8,9]])

Out [1]: (Visual aid only, not real output)

 JUPYTER NB

1 2 3

4 5 6

7 8 9

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Two-Dimensional NumPy Arrays

– Two-dimensional NumPy arrays have rows (horizontally) and columns (vertically)

Slide 77

Row 0 1 2 3

Row 1 4 5 6

Row 2 7 8 9

C
olum

n 0

C
olum

n 1

C
olum

n 2

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Array Indexing

– Array indexing for one-dimensional arrays works as usual: onedim[0]
– Accessing items in a two-dimensional array requires you to specify two indices: twodim[0,1]

– First index is the row number (here 0), second index is the column number (here 1)

18.05.2019 Slide 78

Row 0 1 2 3

Row 1 4 5 6

Row 2 7 8 9

C
ol. 0

C
ol. 1

C
ol. 2

twodim

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Objects in Python

– Almost everything in Python is an object, with its properties and methods

– For example, a dictionary is an object that provides an items() method, which can only be called on a
dictionary object (which is the same as a value of the dictionary type, or a dictionary value)

– An object can also provide attributes next to methods, which may describe properties of the specific
object

– For example, for an array object it might be interesting to see how many elements it contains at the
moment, so we might want to provide a size attribute storing information about this specific property

Slide 79Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

NumPy Array Attributes

–

Slide 80

In [1]: example = np.array([0,1,2,3])
 type(example)

Out [1]: np.ndarray

 JUPYTER NB

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Creating Arrays from Scratch

– NumPy provides a wide range of functions for the creation of arrays:
https://docs.scipy.org/doc/numpy-1.15.4/reference/routines.array-creation.html#routines-array-creation
– For example: np.arange, np.zeros, np.ones, np.linspace, etc.

– NumPy also provides functions to create arrays filled with random data:
https://docs.scipy.org/doc/numpy-1.15.1/reference/routines.random.html
– For example: np.random.random, np.random.randint, etc.

Slide 81Python - Data Analysis Essentials | David Pinezich

https://docs.scipy.org/doc/numpy-1.15.4/reference/routines.array-creation.html#routines-array-creation
https://docs.scipy.org/doc/numpy-1.15.1/reference/routines.random.html

IT Training and Continuing Education

NumPy Data Types

– Use the keyword dtype to specify the data type of the array elements:

– Overview of available data types: https://docs.scipy.org/doc/numpy-1.15.4/user/basics.types.html

Slide 82

In [1]: floats = np.array([0,1,2,3], dtype="float32")
 floats

Out [1]: array([0., 1., 2., 3.], dtype=float32)

 JUPYTER NB

Python - Data Analysis Essentials | David Pinezich

https://docs.scipy.org/doc/numpy-1.15.4/user/basics.types.html

IT Training and Continuing Education

Array Slicing: One-Dimensional Subarrays

– Let x be a one-dimensional NumPy array
– The NumPy slicing syntax follows that of the standard Python list:

x[start:stop:step]

Slide 83

Slice Description
x[:5] First five elements
x[5:] All elements after index 5
x[4:7] Middle subarray
x[::2] Every other element
x[1::2] Every other element, starting at index 1
x[::-1] All elements, reversed
x[5::-1] Reverses all elements up until index 5 (included)

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Array Slicing: Multidimensional Subarrays

– Let Y be a two-dimensional NumPy array. Multiple slices are now separated by commas:

Y[start:stop:step, start:stop:step]

Slide 84

Slice Description
Y[:2, :3] First two rows and first three columns
Y[:3, ::2] First three rows and every other column

Y[::-1, ::-1] Reverse rows and columns
Y[:, 0] First column
Y[2, :] Third row
Y[2] Same as Y[2, :], so third row again

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Array Views and Copies

– With Python lists, the slices will be copies: If we modify the subarray, only the copy gets changed
– With NumPy arrays, the slices will be direct views: If we modify the subarray, the original array gets

changed, too
– Very useful: When working with large datasets, we don't need to copy any data (costly operation)

– Creating copies: we can use the copy() method of a slice to create a copy of the specific subarray
– Note: The type of a slice is again numpy.ndarray

Slide 85Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Array Slicing: Multidimensional Subarrays

– Since we're working with direct views, we can update the data using array slicing:

Slide 86

100 24 0

41 30 12

10 5 53

Y =

100 1 0

41 2 12

10 3 53

Y[:,1] = [1,2,3]
(Result)

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Reshaping

– We can use the reshape() method on an NumPy array to actually change its shape:

– For this to work, the size of the initial array must match the size of the reshaped array
– Important: reshape() will return a new view if possible; otherwise, it will be a copy

– Remember: In case of a view, if you change an entry of the reshaped array, it will also change the
initial array

Slide 87

In [1]: grid = np.arange(1, 10).reshape((3, 3))
 print(grid)

 [[1 2 3]
 [4 5 6]
 [7 8 9]]

 JUPYTER NB

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Array Concatenation and Splitting

– Concatenation, or joining of two or multiple arrays in NumPy can be accomplished through the functions
np.concatenate, np.vstack, and np.hstack
– Join multiple two-dimensional arrays: np.concatenate([twodim1, twodim2,…], axis=0)

– A two-dimensional array has two axes: The first running vertically downwards across rows (axis
0), and the second running horizontally across columns (axis 1)

– The opposite of concatenation is splitting, which is provided by the functions np.split, np.hsplit (split
horizontally), and np.vsplit (split vertically)
– For each of these we can pass a list of indices giving the split points

Slide 88Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Faster Operations Instead of Slow for Loops

– Looping over arrays to operate on each element can be a quite slow operation in Python

– One of the reasons why the for loop approach is so slow is because of the type-checking and function
dispatches that must be done at each iteration of the cycle
– Python needs to examine the object's type and do a dynamic lookup of the correct function to use for

that type

Slide 89

Let’s check this out on a concrete example, which we will be timing using
IPython's %timeit magic command

{Live Coding}

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

NumPy's Universal Functions

– NumPy provides very fast, vectorized operations which are implemented via universal functions (ufuncs),
whose main purpose is to quickly execute repeated operations on values in NumPy arrays
– A vectorized operation is performed on the array, which will then be applied to each element

– Instead of computing the reciprocal using a for loop, let us do it by using a universal function:

– We can use ufuncs to apply an operation between a scalar and an array, but we can also operate
between two arrays

Slide 90

In [1]: %timeit (1.0 / big_array) JUPYTER NB

Lets time this new approach in our Jupyter notebook {Live Coding}

In [1]: np.array([4,5,6]) / np.array([1,2,3]) JUPYTER NB

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

NumPy's Universal Functions

Operator Equivalent ufunc Description
+ np.add Addition
- np.subtract Subtraction
- np.negative Unary negation (e.g., -2)
* np.multiply Multiplication
/ np.divide Division
// np.floor_divide Floor division (e.g., 3 // 2 = 1)
** np.power Exponentiation (e.g., 3**2 = 8)
% np.mod Modulus/remainder (e.g., 9 % 4 = 1)

Slide 91Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Advanced Ufunc Features: Specifying Output and Aggregates

– ufuncs provide a few specialized features
– We can specify where to store a result (useful for large calculations)

– If no out argument is provided, a newly-allocated array is returned (can be costly memory-wise)

– Reduce: Repeatedly apply a given operation to the elements of an array until only one single result
remains
– For example, np.add.reduce(x) applies addition to the elements until the one result remains,

namely the sum of all elements
– Accumulate: Almost same as reduce, but also stores the intermediate results of the computation

Slide 92

Lets see how these advanced ufunc features work {Live Coding}

In [1]: np.multiply(x,10, out=y) JUPYTER NB

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Aggregations

– If we want to compute summary statistics for the data in question, aggregates are very useful
– Common summary statistics: mean, standard deviation, median, minimum, maximum, quantiles, etc.

– NumPy provides fast built-in aggregation function for working with arrays:

– Summing values in an array:

Slide 93

In [1]: %timeit np.max(x) # NumPy ufunc
 %timeit max(x) # Python function

 JUPYTER NB

Lets check out other aggregation functions {Live Coding}

In [1]: %timeit np.sum(x) # NumPy ufunc
 %timeit sum(x) # Python function

 JUPYTER NB

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Some Other Aggregate Functions

Function Name Description
np.sum Compute sum of elements
np.prod Compute product of elements
np.mean Compute mean of elements
np.std Compute standard deviation
np.min Find minimum value
np.max Find maximum value

np.argmin Find index of minimum value
np.argmax Find index of maximum value
np.median Compute median of elements

np.percentile

Slide 94Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Multidimensional Aggregates

– By default, each NumPy aggregation function will return the aggregate over the entire array
– Aggregation functions take an additional argument specifying the axis along which the aggregate is

computed
– For example, we can find the minimum value within each column by specifying axis=0:

Slide 95

In [1]: twodim.min(axis=0)
Out [1]: array([…]) # Array containing min. of each column

 JUPYTER NB

Lets check out why axis=0 returns a result in regard to the columns and
lets visualize these results by switching between the axes in a two-dim. array

{Live Coding}

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Example: a = array([[1, 2],
 [3, 4]])

a.sum(axis=0) a.sum(axis=1) a.sum()

array([4, 6]) array([3, 7]) 10

Slide 96Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Checkpoint 2

- For the exercises there is a tip for each exercise. Check out the
function documentation on: https://numpy.org/doc/ to find out more
about it. This can often be useful and reading the manual of
something is often the fastest way to learn about it.

- This being said don’t be afraid to ask if you don’t understand
something.

- You read and ran the cells in the Numpy notebook up until
Multidimensional Aggregates

- You finished the Numpy exercises up to exercise 20(without 20)

Slide 97Python - Data Analysis Essentials | David Pinezich

https://numpy.org/doc/

IT Training and Continuing Education

The Boolean Data Type

– Boolean data type: True, False (only two possible values)
– Comparison operators compare two values and evaluate to a single Boolean value

– The comparison operators are ==, !=, <, >, <=, and >=
– Boolean operators are used to compare Boolean values

– The Boolean operators are or, and, and not
– We can mix Boolean and comparison operators to create conditions

Slide 98

• Lets see the Boolean and comparison operators in action {Live Coding}

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Comparison Operators as ufuncs

– NumPy also implements comparison operators as element-wise ufuncs
– The result of these comparison operators is always an array with a Boolean data type:

Slide 99

Operator Equivalent ufunc
== np.equal

!= np.not_equal

< np.less

<= np.less_equal

> np.greater

>= np.greater_equal

In [1]: np.array([1,2,3]) < 2 JUPYTER NB

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Comparison Operators as ufuncs

– It is also possible to do an element-by-element comparison of two arrays:

Slide 100

In [1]: np.array([1,2,3]) < np.array([0,4,2]) JUPYTER NB

These ufuncs will work on arrays of any size and shape.
Lets see an example on how a multidimensional example looks like

{Live Coding}

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Working with Boolean Arrays: Counting Entries

– The np.count_nonzero() function will count the number of True entries in a Boolean array:

– We can also use the np.sum() function to accomplish the same. In this case, True is interpreted as 1
and False as 0:

Slide 101

In [1]: nums = np.array([1,2,3,4,5])
 np.count_nonzero(nums < 4)

Out [1]: 3

 JUPYTER NB

In [1]: np.sum(nums < 4)

Out [1]: 3

 JUPYTER NB

Lets checkout the np.any() and np.all() functions in relation to Boolean arrays {Live Coding}

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Working with Boolean Arrays: Boolean Operators

– NumPy also implements bitwise logic operators as element-wise ufuncs
– We can use these bitwise logic operators to construct compound conditions (consisting of multiple

conditions)

Slide 102

Operator Equivalent ufunc
& np.bitwise_and

| np.bitwise_or

^ np.bitwise_xor

~ np.bitwise_not

These ufuncs will work on arrays of any size and shape.
Lets see an example on how a multidimensional example looks like

{Live Coding}

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Boolean Arrays as Masks

– In the previous slides we looked at aggregates computed directly on Boolean arrays
– Once we have a Boolean array from lets say a comparison, we can select the entries that meet the

condition by using the Boolean array as a mask

Slide 103

3 1 5

10 32 100

-1 3 4

x
True True False

False False False

True True True

x<5
3 1 5

10 32 100

-1 3 4

x[x<5]

array([3,1,-1,3,4])

Lets checkout more examples using this masking operation {Live Coding}

(Result)

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Checkpoint 3

- You read and ran the cells in the Numpy notebook up until Reading and Writing Data with Numpy
- You solved the Numpy exercises 20-60 (including 60)

Slide 104Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Reading and Writing Data with NumPy

– We can use the np.savetxt() function to save NumPy data to a file
– We can use the np.loadtxt() function to load data from a file

– Remember: We can only store elements of a single type in a NumPy array
– Use the shell commands !ls, !pwd, and !cd to navigate the file system if necessary

Slide 105

Lets checkout how we can read and write files with NumPy {Live Coding}

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Comma-Separated Values (CSV)

– CSV files are simplified spreadsheets stored as plaintext files
– Excel for example allows to export spreadsheets as CSV files

– CSV files
– Don't have types for their values – everything is a string
– Don't have settings for font size or color
– Can't specify cell width and heights
– And more

Slide 106Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Comma-Separated Values (CSV)

– Each line in a CSV file represents a row in the spreadsheet, and commas separate the cells in the row:

Slide 107

4/5/2015 13:34,Apples,73
4/5/2015 3:41,Cherries,85
4/6/2015 12:46,Pears,14
4/8/2015 8:59,Oranges,52

Source: Automate the Boring Stuff with Python

Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Reading CSV Data with NumPy

– Some CSV data contains a mix between numbers and strings, or might have missing values
– We can use the np.genfromtxt() function to load mixed data from such a file into a NumPy array

Slide 108

Lets import the FIFA 2019 CSV file using numpy.genfromtxt() {Live Coding}

Dataset source: https://www.kaggle.com/karangadiya/fifa19

Python - Data Analysis Essentials | David Pinezich

https://www.kaggle.com/karangadiya/fifa19

IT Training and Continuing Education

Learning Objectives

– You know:

– How to create one- and two-dimensional NumPy arrays

– How to access these arrays

– How to use the aggregation functions

– How to work with Boolean arrays

– How to read and write files with NumPy

Slide 109Python - Data Analysis Essentials | David Pinezich

IT Training and Continuing Education

Questions

– If you have any questions, information, or more about any topic of today's course, feel free to write me at
david.pinezich@gmail.com

Slide 110Python - Data Analysis Essentials | David Pinezich

mailto:david.pinezich@gmail.com

