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Abstract

Absence of evidence is not evidence of absence � the title of the 1995 paper by Douglas

Altman and Martin Bland has since become a mantra in the statistical and medical

literature. Yet the misinterpretation of statistically non-signi�cant results as evidence

for the absence of an e�ect is still common and further complicated in the context of

replication studies. In several large-scale replication projects, non-signi�cant results

in both the original and the replication study have been interpreted as a �replication

success�. Here we discuss the logical problems with this approach. It does not ensure

that the studies provide evidence for the absence of an e�ect and �replication success�

can virtually always be achieved if the sample sizes of the studies are small enough. In

addition, the relevant error rates are not controlled. We show how methods, such as

equivalence testing and Bayes factors, can be used to adequately quantify the evidence

for the absence of an e�ect and how they can be applied in the replication setting.

Using data from the Reproducibility Project: Cancer Biology we illustrate that most

original and replication studies with �null results� are in fact inconclusive. We con-

clude that it is important to also replicate studies with statistically non-signi�cant

results, but that they should be designed, analyzed, and interpreted appropriately.

Keywords: Bayesian hypothesis testing, equivalence testing, null hypothesis, replica-

tion success

1 Introduction

The misconception that a statistically non-signi�cant result indicates evidence for the absence of

an e�ect is unfortunately widespread (Altman and Bland, 1995). Such a �null result� � typically

characterized by a p-value of p > 5% for the null hypothesis of an absent e�ect � may also occur

if an e�ect is actually present. For example, if the sample size of a study is chosen to detect

an assumed e�ect with a power of 80%, null results will incorrectly occur 20% of the time when

the assumed e�ect is actually present. Conversely, if the power of the study is lower, null results
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will occur more often. In general, the lower the power of a study, the greater the ambiguity of

a null result. To put a null result in context, it is therefore critical to know whether the study

was adequately powered and under what assumed e�ect the power was calculated (Hoenig and

Heisey, 2001; Greenland, 2012). However, if the goal of a study is to explicitly quantify the

evidence for the absence of an e�ect, more appropriate methods designed for this task, such as

equivalence testing or Bayes factors, should ideally be used from the outset.

The contextualization of null results becomes even more complicated in the setting of repli-

cation studies. In a replication study, researchers attempt to repeat an original study as closely

as possible in order to assess whether similar results can be obtained with new data (National

Academies of Sciences, Engineering, and Medicine, 2019). There have been various large-scale

replication projects in the biomedical and social sciences in the last decade (Prinz et al., 2011;

Begley and Ellis, 2012; Klein et al., 2014; Open Science Collaboration, 2015; Camerer et al.,

2016, 2018; Klein et al., 2018; Cova et al., 2018; Errington et al., 2021, among others). Most of

these projects suggested alarmingly low replicability rates across a broad spectrum of criteria for

quantifying replicability. While most of these projects restricted their focus on original studies

with statistically signi�cant results (�positive results�), the Reproducibility Project: Psychology

(RPP, Open Science Collaboration, 2015), the Reproducibility Project: Experimental Philosophy

(RPEP, Cova et al., 2018), and the Reproducibility Project: Cancer Biology (RPCB, Errington

et al., 2021) also attempted to replicate some original studies with null results.

The RPP excluded the original null results from its overall assessment of replication success,

but the RPCB and the RPEP explicitly de�ned null results in both the original and the replication

study as a criterion for �replication success�. There are several logical problems with this �non-

signi�cance� criterion. First, if the original study had low statistical power, a non-signi�cant

result is highly inconclusive and does not provide evidence for the absence of an e�ect. It is then

unclear what exactly the goal of the replication should be � to replicate the inconclusiveness of

the original result? On the other hand, if the original study was adequately powered, a non-

signi�cant result may indeed provide some evidence for the absence of an e�ect when analyzed

with appropriate methods, so that the goal of the replication is clearer. However, the criterion

does not distinguish between these two cases. Second, with this criterion researchers can virtually

always achieve replication success by conducting two studies with very small sample sizes, such

that the p-values are non-signi�cant and the results are inconclusive. This is because the null

hypothesis under which the p-values are computed is misaligned with the goal of inference, which

is to quantify the evidence for the absence of an e�ect. We will discuss methods that are better

aligned with this inferential goal in Section 3. Third, the criterion does not control the error

of falsely claiming the absence of an e�ect at some predetermined rate. This is in contrast to

the standard replication success criterion of requiring signi�cance from both studies (also known

as the two-trials rule, see chapter 12.2.8 in Senn, 2008), which ensures that the error of falsley

claiming the presence of an e�ect is controlled at a rate equal to the squared signi�cance level

(for example, 5%× 5% = 0.25% for a 5% signi�cance level). The non-signi�cance criterion may

be intended to complement the two-trials rule for null results, but it fails to do so in this respect,

which may be important to regulators, funders, and researchers. We will now demonstrate these

issues and potential solutions using the null results from the RPCB.
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2 Null results from the Reproducibility Project: Cancer Biology

Figure 1 shows standardized mean di�erence e�ect estimates with con�dence intervals from two

RPCB study pairs. Both are �null results� and meet the non-signi�cance criterion for replication

success (the two-sided p-values are greater than 5% in both the original and the replication

study), but intuition would suggest that these two pairs are very much di�erent.

n = 6 n = 6
p = 0.15 p = 0.07

n = 34 n = 61
p = 0.87 p = 0.06

Dawson et al. (2011)
Absence of evidence

Goetz et al. (2011)
Evidence of absence

Original Replication Original Replication
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Figure 1: Two examples of original and replication study pairs which meet the non-signi�cance replica-
tion success criterion from the Reproducibility Project: Cancer Biology (Errington et al., 2021). Shown
are standardized mean di�erence e�ect estimates with 95% con�dence intervals, total sample size, and
p-values for the null hypothesis that the standardized mean di�erence is zero.

The original study from Dawson et al. (2011) and its replication both show large e�ect

estimates in magnitude, but due to the small sample sizes, the uncertainty of these estimates is

very large, too. If the sample sizes of the studies were larger and the point estimates remained

the same, intuitively both studies would provide evidence for a non-zero e�ect. However, with

the samples sizes that were actually used, the results seem inconclusive. In contrast, the e�ect

estimates from Goetz et al. (2011) and its replication are much smaller in magnitude and their

uncertainty is also smaller because the studies used larger sample sizes. Intuitively, these studies

seem to provide some evidence for a zero (or negligibly small) e�ect. While these two examples

show the qualitative di�erence between absence of evidence and evidence of absence, we will now

discuss how the two can be quantitatively distinguished.

3 Methods for asssessing replicability of null results

There are both frequentist and Bayesian methods that can be used for assessing evidence for

the absence of an e�ect. Anderson and Maxwell (2016) provide an excellent summary of both

approaches in the context of replication studies in psychology. We now brie�y discuss two

possible approaches � frequentist equivalence testing and Bayesian hypothesis testing � and their

application to the RPCB data.
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Figure 2: Standardized mean di�erence (SMD) e�ect estimates with 90% con�dence interval for the
�null results� (those with original two-sided p-value p > 5%) and their replication studies from the
Reproducibility Project: Cancer Biology (Errington et al., 2021). The identi�er above each plot indicates
(Original paper number, Experiment number, E�ect number, Internal replication number). The two
examples from Figure 1 are indicated in the plot titles. The dashed grey line depicts the value of no e�ect
(SMD = 0) whereas the dotted red lines depict the equivalence range with margin ∆ = 1. The p-values
pTOST are the maximum of the two one-sided p-values for the e�ect being smaller or greater than +∆
or −∆, respectively. The Bayes factors BF01 quantify evidence for the null hypothesis H0 : SMD = 0
against the alternative H1 : SMD ̸= 0 with normal unit-information prior assigned to the SMD under H1.
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3.1 Equivalence testing

Equivalence testing was developed in the context of clinical trials to assess whether a new treat-

ment � typically cheaper or with fewer side e�ects than the established treatment � is practically

equivalent to the established treatment (Westlake, 1972; Schuirmann, 1987). The method can

also be used to assess whether an e�ect is practically equivalent to the value of an absent ef-

fect, usually zero. Using equivalence testing as a remedy for non-signi�cant results has been

suggested by several authors (Hauck and Anderson, 1986; Campbell and Gustafson, 2018). The

main challenge is to specify the margin ∆ > 0 that de�nes an equivalence range [−∆,+∆] in

which an e�ect is considered as absent for practical purposes. The goal is then to reject the

composite null hypothesis that the true e�ect is outside the equivalence range. To ensure that

the null hypothesis is falsely rejected at most α × 100% of the time, one either rejects it if the

(1− 2α)× 100% con�dence interval for the e�ect is contained within the equivalence range (for

example, a 90% con�dence interval for α = 5%), or if two one-sided tests (TOST) for the e�ect

being smaller/greater than +∆ and −∆ are signi�cant at level α, respectively. A quantita-

tive measure of evidence for the absence of an e�ect is then given by the maximum of the two

one-sided p-values (the TOST p-value).

Returning to the RPCB data, Figure 2 shows the standarized mean di�erence e�ect estimates

with 90% con�dence intervals for the 20 study pairs with quantitative null results in the original

study (p > 5%). The dotted red lines represent an equivalence range for the margin ∆ = 1,

for which the shown TOST p-values are computed. This margin is rather lax compared to the

margins typically used in clinical research; we chose it primarily for illustrative purposes and

because e�ect sizes in preclinical research are typically much larger than in clinical research. In

practice, the margin should be determined on a case-by-case basis by researchers who are familiar

with the subject matter. However, even with this generous margin, only four of the twenty study

pairs � one of them being the previously discussed example from Goetz et al. (2011) � are able to

establish equivalence at the 5% level in the sense that both the original and the replication 90%

con�dence interval fall within the equivalence range (or equivalently that their TOST p-values are

smaller than 5%). For the remaining 16 studies � for instance, the previously discussed example

from Dawson et al. (2011) � the situation remains inconclusive and there is neither evidence for

the absence nor the presence of the e�ect.

3.2 Bayesian hypothesis testing

The distinction between absence of evidence and evidence of absence is naturally built into the

Bayesian approach to hypothesis testing. A central measure of evidence is the Bayes factor (Kass

and Raftery, 1995), which is the updating factor of the prior odds to the posterior odds of the

null hypothesis H0 versus the alternative hypothesis H1

Pr(H0 |data)
Pr(H1 |data)︸ ︷︷ ︸
Posterior odds

=
Pr(H0)

Pr(H1)︸ ︷︷ ︸
Prior odds

× p(data |H0)

p(data |H1)︸ ︷︷ ︸
Bayes factor BF01

.
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The Bayes factor quanti�es how much the observed data have increased or decreased the prob-

ability of the null hypothesis H0 relative to the alternative H1. If the null hypothesis states

the absence of an e�ect, a Bayes factor greater than one (BF01 > 1) indicates evidence for the

absence of the e�ect and a Bayes factor smaller than one indicates evidence for the presence of

the e�ect (BF01 < 1), whereas a Bayes factor not much di�erent from one indicates absence of

evidence for either hypothesis (BF01 ≈ 1).

When the observed data are dichotomized into positive (p < 5%) or null results (p > 5%),

the Bayes factor based on a null result is the probability of observing p > 5% when the e�ect

is indeed absent (which is 95%) divided by the probability of observing p > 5% when the e�ect

is indeed present (which is one minus the power of the study). For example, if the power is

90%, we have BF01 = 95%/10% = 9.5 indicating almost ten times more evidence for the absence

of the e�ect than for its presence. On the other hand, if the power is only 50%, we have

BF01 = 95%/50% = 1.9 indicating only slightly more evidence for the absence of the e�ect. This

example also highlights the main challenge with Bayes factors � the speci�cation of the alternative

hypothesis H1. The assumed e�ect under H1 is directly related to the power of the study, and

researchers who assume di�erent e�ects underH1 will end up with di�erent Bayes factors. Instead

of specifying a single e�ect, one therefore typically speci�es a �prior distribution� of plausible

e�ects. Importantly, the prior distribution, like the equivalence margin, should be determined

by researchers with subject knowledge and before the data are observed.

In practice, the observed data should not be dichotomized into positive or null results, as this

leads to a loss of information. Therefore, to compute the Bayes factors for the RPCB null results,

we used the observed e�ect estimates as the data and assumed a normal sampling distribution

for them, as in a meta-analysis. The Bayes factors BF01 shown in Figure 2 then quantify the

evidence for the null hypothesis of no e�ect (H0 : SMD = 0) against the alternative hypothesis

that there is an e�ect (H1 : SMD ̸= 0) using a normal �unit-information� prior distribution (Kass

and Wasserman, 1995) for the e�ect size under the alternative H1. There are several more

advanced prior distributions that could be used here, and they should ideally be speci�ed for

each e�ect individually based on domain knowledge. The normal unit-information prior (with a

standard deviation of 2 for SMDs) is only a reasonable default choice, as it implies that small to

large e�ects are plausible under the alternative. We see that in most cases there is no substantial

evidence for either the absence or the presence of an e�ect, as with the equivalence tests. The

Bayes factors for the two previously discussed examples from Goetz et al. (2011) and Dawson

et al. (2011) are consistent with our intuititons � there is indeed some evidence for the absence

of an e�ect in Goetz et al. (2011), while there is even slightly more evidence for the presence of

an e�ect in Dawson et al. (2011), though the Bayes factor is very close to one due to the small

sample sizes. If we use a lenient Bayes factor threshold of BF01 > 3 to de�ne evidence for the

absence of the e�ect, only one of the twenty study pairs meets this criteiron in both the original

and replication study.

Among the twenty RPCB null results, there is one interesting case (the rightmost plot in the

fourth row (48, 2, 4, 1)) where the Bayes factor is qualitatively di�erent from the equivalence test,

revealing a fundamental di�erence between the two approaches. The Bayes factor is concerned

with testing whether the e�ect is exactly zero, whereas the equivalence test is concerned with
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whether the e�ect is within an interval around zero. Due to the very large sample size in this

replication study, the data are incompatible with an exactly zero e�ect, but compatible with

e�ects within the equivalence range. Apart from this example, however, the approaches lead to

the same qualitative conclusion � most RPCB null results are highly ambiguous.

4 Conclusions

We showed that in most of the RPCB studies with �null results� (those with p > 5%), neither

the original nor the replication study provided conclusive evidence for the presence or absence of

an e�ect. It seems logically questionable to declare an inconclusive replication of an inconclusive

original study as a replication success. While it is important to replicate original studies with

null results, our analysis highlights that they should be analyzed and interpreted appropriately.

For both the equivalence testing and the Bayes factor approach, it is critical that the pa-

rameters of the procedure (the equivalence margin and the prior distribution) are speci�ed inde-

pendently of the data, ideally before the studies are conducted. Typically, however, the original

studies were designed to �nd evidence for the presence of an e�ect, and the goal of replicating the

�null result� was formulated only after failure to do so. Campbell and Gustafson (2021) discuss

various approaches to post-hoc speci�cation of equivalence margins, such as motivating it using

data from previous studies or using �eld conventions. Hauck and Anderson (1986) propose a

sensitivity analysis approach in the form of plotting the TOST p-value against a range of possible

margins (�equivalence curves�). Post-hoc speci�cation of a prior distribution for a Bayes factor

may likewise be based on historical data, �eld conventions, or assessed visually with sensitivity

analyses.

While the equivalence test and the Bayes factor are two principled methods for analyzing

original and replication studies with null results, they are not the only possible methods for

doing so. For instance, the reverse-Bayes approach from Micheloud and Held (2022b) speci�cally

tailored to equivalence testing in the replication setting may lead to more appropriate inferences

as it also takes into account the compatibility of the e�ect estimates from original and replication

studies. In addition, there are various other Bayesian methods which could potentially improve

upon the considered Bayes factor approach. For example, Bayes factors based on non-local priors

(Johnson and Rossell, 2010) or based on interval null hypotheses (Morey and Rouder, 2011; Liao

et al., 2020), methods for equivalence testing based on e�ect size posterior distributions (Kr-

uschke, 2018), or Bayesian procedures that involve utilities of decisions (Lindley, 1998). Finally,

the design of replication studies should align with the planned analysis (Anderson and Maxwell,

2017; Anderson and Kelley, 2022; Micheloud and Held, 2022a; Pawel et al., 2022). If the goal of

the study is to �nd evidence for the absence of an e�ect, the replication sample size should also

be determined so that the study has adequate power to make conclusive inferences regarding the

absence of the e�ect.
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Data and software

The data from the RPCB were obtained by downloading the �les from https://github.com/

mayamathur/rpcb (commit a1e0c63) and executing the R script Code/data_prep.R with the line

632 commented out so that also original studies with null results are included. This then produced

the �le prepped_outcome_level_data.csv which was used for the subsequent analyses. The

e�ect estimates and standard errors on SMD scale provided in this data set di�er in some cases

from those in the data set available at https://doi.org/10.17605/osf.io/e5nvr, which is

cited in Errington et al. (2021). We used this particular version of the data set because it was

recommended to us by the RPCB statistician (Maya Mathur) upon request. For the Dawson

et al. (2011) example study and its replication (Shan et al., 2017), the sample sizes n = 3 in th

data set seem to correspond to the group sample sizes, see Figure 5A in the replication study

(https://doi.org/10.7554/eLife.25306.012), which is why we report the total sample sizes

of n = 6 in Figure 1.

The code and data to reproduce our analyses is openly available at https://gitlab.uzh.

ch/samuel.pawel/rsAbsence. A snapshot of the repository at the time of writing is available

at https://doi.org/10.5281/zenodo.XXXXXX. We used the statistical programming language

R version 4.2.0 (R Core Team, 2022) for analyses. The R packages ggplot2 (Wickham, 2016),

dplyr (Wickham et al., 2022), knitr (Xie, 2022), and reporttools (Ru�bach, 2009) were used

for plotting, data preparation, dynamic reporting, and formatting, respectively.
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Computational details

cat(paste(Sys.time(), Sys.timezone(), "\n"))

## 2023-03-24 09:59:39 Etc/UTC

sessionInfo()

## R version 4.2.0 (2022-04-22)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Ubuntu 20.04.4 LTS

##

## Matrix products: default

## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3

## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3

##

## locale:

## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8

## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C

## [9] LC_ADDRESS=C LC_TELEPHONE=C

## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

## attached base packages:

## [1] stats graphics grDevices utils datasets methods base

##

## other attached packages:

## [1] reporttools_1.1.3 xtable_1.8-4 dplyr_1.0.9 ggplot2_3.3.6

## [5] knitr_1.39

##

## loaded via a namespace (and not attached):

## [1] magrittr_2.0.3 tidyselect_1.1.2 munsell_0.5.0 colorspace_2.0-3

## [5] R6_2.5.1 rlang_1.0.2 fansi_1.0.3 highr_0.9

## [9] stringr_1.4.0 tools_4.2.0 grid_4.2.0 gtable_0.3.0

## [13] xfun_0.31 utf8_1.2.2 DBI_1.1.2 cli_3.3.0

## [17] withr_2.5.0 ellipsis_0.3.2 digest_0.6.29 assertthat_0.2.1

## [21] tibble_3.1.7 lifecycle_1.0.1 crayon_1.5.1 farver_2.1.0

## [25] purrr_0.3.4 vctrs_0.4.1 glue_1.6.2 evaluate_0.15

## [29] labeling_0.4.2 stringi_1.7.6 compiler_4.2.0 pillar_1.7.0

## [33] generics_0.1.2 scales_1.2.0 pkgconfig_2.0.3
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