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Meta-Research: Replication of “null
results” - Absence of evidence or
evidence of absence?
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University of Zurich, Switzerland

Abstract In several large-scale replication projects, statistically non-significant results in both
the original and the replication study have been interpreted as a “replication success”. Here we
discuss the logical problems with this approach. Non-significance in both studies does not ensure
that the studies provide evidence for the absence of an effect and “replication success” can
virtually always be achieved if the sample sizes of the studies are small enough. In addition, the
relevant error rates are not controlled. We show how methods, such as equivalence testing and
Bayes factors, can be used to adequately quantify the evidence for the absence of an effect and
how they can be applied in the replication setting. Using data from the Reproducibility Project:
Cancer Biology we illustrate that many original and replication studies with “null results” are in
fact inconclusive. We conclude that it is important to also replicate studies with statistically
non-significant results, but that they should be designed, analyzed, and interpreted appropriately.

Introduction
Absence of evidence is not evidence of absence - the title of the 1995 paper by Douglas Altman and
Martin Bland has since become a mantra in the statistical and medical literature (Altman and Bland,
1995). Yet, the misconception that a statistically non-significant result indicates evidence for the
absence of an effect is unfortunately still widespread (Makin and de Xivry, 2019). Such a “null result”
- typically characterized by a p-value of p > 0.05 for the null hypothesis of an absent effect - may
also occur if an effect is actually present. For example, if the sample size of a study is chosen to
detect an assumed effect with a power of 80%, null results will incorrectly occur 20% of the time
when the assumed effect is actually present. Conversely, if the power of the study is lower, null
results will occur more often. In general, the lower the power of a study, the greater the ambiguity
of a null result. To put a null result in context, it is therefore critical to know whether the study
was adequately powered and under what assumed effect the power was calculated (Hoenig and
Heisey, 2001; Greenland, 2012). However, if the goal of a study is to explicitly quantify the evidence
for the absence of an effect, more appropriate methods designed for this task, such as equivalence
testing (Wellek, 2010) or Bayes factors (Kass and Raftery, 1995), should be used from the outset.
The contextualization of null results becomes even more complicated in the setting of repli-
cation studies. In a replication study, researchers attempt to repeat an original study as closely
as possible in order to assess whether similar results can be obtained with new data (National
Academies of Sciences, Engineering, and Medicine, 2019). There have been various large-scale
replication projects in the biomedical and social sciences in the last decade (Prinz et al., 2011; Beg-
ley and Ellis, 2012; Klein et al., 2014; Open Science Collaboration, 2015; Camerer et al., 2016, 2018,
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Klein et al., 2018; Cova et al., 2018; Errington et al., 2021, among others). Most of these projects
reported alarmingly low replicability rates across a broad spectrum of criteria for quantifying repli-
cability. While most of these projects restricted their focus on original studies with statistically
significant results (“positive results”), the Reproducibility Project: Psychology (RPP, Open Science Col-
laboration, 2015), the Reproducibility Project: Experimental Philosophy (RPEP, Cova et al., 2018), and
the Reproducibility Project: Cancer Biology (RPCB, Errington et al., 2021) also attempted to replicate
some original studies with null results.

The RPP excluded the original null results from its overall assessment of replication success,
but the RPCB and the RPEP explicitly defined null results in both the original and the replication
study as a criterion for “replication success”. There are several logical problems with this “non-
significance” criterion. First, if the original study had low statistical power, a non-significant result
is highly inconclusive and does not provide evidence for the absence of an effect. It is then un-
clear what exactly the goal of the replication should be - to replicate the inconclusiveness of the
original result? On the other hand, if the original study was adequately powered, a non-significant
result may indeed provide some evidence for the absence of an effect when analyzed with ap-
propriate methods, so that the goal of the replication is clearer. However, the criterion does not
distinguish between these two cases. Second, with this criterion researchers can virtually always
achieve replication success by conducting two studies with very small sample sizes, such that the
p-values are non-significant and the results are inconclusive. This is because the null hypothesis un-
der which the p-values are computed is misaligned with the goal of inference, which is to quantify
the evidence for the absence of an effect. We will discuss methods that are better aligned with this
inferential goal. Third, the criterion does not control the error of falsely claiming the absence of an
effect at some predetermined rate. This is in contrast to the standard replication success criterion
of requiring significance from both studies (also known as the two-trials rule, see chapter 12.2.8 in
Senn, 2008), which ensures that the error of falsely claiming the presence of an effect is controlled
at a rate equal to the squared significance level (for example, 5% x 5% = 0.25% for a 5% significance
level). The non-significance criterion may be intended to complement the two-trials rule for null
results, but it fails to do so in this respect, which may be important to regulators, funders, and
researchers. We will now demonstrate these issues and potential solutions using the null results
from the RPCB.

Null results from the Reproducibility Project: Cancer Biology

Figure 1 shows standardized mean difference effect estimates with confidence intervals from two
RPCB study pairs. Both are “null results” and meet the non-significance criterion for replication
success (the two-sided p-values are greater than 0.05 in both the original and the replication study),
but intuition would suggest that these two pairs are very much different.

The original study from Dawson et al. (20117) and its replication both show large effect estimates
in magnitude, but due to the small sample sizes, the uncertainty of these estimates is very large,
too. If the sample sizes of the studies were larger and the point estimates remained the same,
intuitively both studies would provide evidence for a non-zero effect. However, with the samples
sizes that were actually used, the results seem inconclusive. In contrast, the effect estimates from
Goetz et al. (20117) and its replication are much smaller in magnitude and their uncertainty is also
smaller because the studies used larger sample sizes. Intuitively, these studies seem to provide
some evidence for a zero (or negligibly small) effect. While these two examples show the qualitative
difference between absence of evidence and evidence of absence, we will now discuss how the two
can be quantitatively distinguished.

Methods for asssessing replicability of null results
There are both frequentist and Bayesian methods that can be used for assessing evidence for the
absence of an effect. Anderson and Maxwell (2016) provide an excellent summary of both ap-
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Figure 1. Two examples of original and replication study pairs which meet the non-significance replication
success criterion from the Reproducibility Project: Cancer Biology (Errington et al., 2021). Shown are
standardized mean difference effect estimates with 95% confidence intervals, sample sizes, and two-sided
p-values for the null hypothesis that the standardized mean difference is zero.

proaches in the context of replication studies in psychology. We now briefly discuss two possible
approaches - frequentist equivalence testing and Bayesian hypothesis testing - and their applica-
tion to the RPCB data.

Equivalence testing

Equivalence testing was developed in the context of clinical trials to assess whether a new treat-
ment - typically cheaper or with fewer side effects than the established treatment - is practically
equivalent to the established treatment (Westlake, 1972; Schuirmann, 1987). The method can also
be used to assess whether an effect is practically equivalent to the value of an absent effect, usu-
ally zero. Using equivalence testing as a remedy for non-significant results has been suggested
by several authors (Hauck and Anderson, 1986; Campbell and Gustafson, 2018). The main chal-
lenge is to specify the margin A > 0 that defines an equivalence range [-A, +A] in which an effect
is considered as absent for practical purposes. The goal is then to reject the null hypothesis that
the true effect is outside the equivalence range. This is in contrast to the usual null hypothesis
of a superiority test which states that the effect is zero or smaller than zero, see Figure 2 for an
illustration.

To ensure that the null hypothesis is falsely rejected at most a x 100% of the time, one either
rejects it if the (1 —2a) x 100% confidence interval for the effect is contained within the equivalence
range (for example, a 90% confidence interval for a« = 5%), or if two one-sided tests (TOST) for the
effect being smaller/greater than +A and —A are significant at level a, respectively. A quantitative
measure of evidence for the absence of an effect is then given by the maximum of the two one-
sided p-values (the TOST p-value).

Returning to the RPCB data, Figure 3 shows the standarized mean difference effect estimates
with 90% confidence intervals for the 20 study pairs with quantitative null results in the original
study (p > 0.05). The dotted red lines represent an equivalence range for the margin A = 1, for which
the shown TOST p-values are computed. This margin is rather lax compared to the margins typically
used in clinical research; we chose it primarily for illustrative purposes and because effect sizes
in preclinical research are typically much larger than in clinical research. In practice, the margin
should be determined on a case-by-case basis by researchers who are familiar with the subject
matter. However, even with this generous margin, only four of the twenty study pairs - one of them
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Figure 2. Null hypothesis (H,) and alternative hypothesis (H,) for different study designs with equivalence
margin A.

being the previously discussed example from Goetz et al. (2017) - are able to establish equivalence
at the 5% level in the sense that both the original and the replication 90% confidence interval fall
within the equivalence range (or equivalently that their TOST p-values are smaller than 0.05). For the
remaining 16 studies - for instance, the previously discussed example from Dawson et al. (2011) -
the situation remains inconclusive and there is neither evidence for the absence nor the presence
of the effect.

Bayesian hypothesis testing
The distinction between absence of evidence and evidence of absence is naturally built into the
Bayesian approach to hypothesis testing. A central measure of evidence is the Bayes factor (Kass
and Raftery, 1995), which is the updating factor of the prior odds to the posterior odds of the null
hypothesis H,, versus the alternative hypothesis H,

Pr(H, | data) _ Pr(H,) p(data|H,)

Pr(H, |data) _ Pr(H,) . p(data H,)
—_

Posterior odds Prior odds  Bayes factor BF;

The Bayes factor quantifies how much the observed data have increased or decreased the prob-
ability of the null hypothesis H,, relative to the alternative H,. If the null hypothesis states the
absence of an effect, a Bayes factor greater than one (BF,, > 1) indicates evidence for the absence
of the effect and a Bayes factor smaller than one indicates evidence for the presence of the effect
(BF,, < 1), whereas a Bayes factor not much different from one indicates absence of evidence for
either hypothesis (BF,, ~ 1).

When the observed data are dichotomized into positive (p < 0.05) or null results (p > 0.05), the
Bayes factor based on a null result is the probability of observing p > 0.05 when the effectis indeed
absent (which is 95%) divided by the probability of observing p > 0.05 when the effect is indeed
present (which is one minus the power of the study). For example, if the power is 90%, we have
BF,;, =95%/10% = 9.5 indicating almost ten times more evidence for the absence of the effect than
for its presence. On the other hand, if the power is only 50%, we have BF,, = 95%/50% = 1.9 indicat-
ing only slightly more evidence for the absence of the effect. This example also highlights the main
challenge with Bayes factors - the specification of the alternative hypothesis H,. The assumed ef-
fect under H, is directly related to the power of the study, and researchers who assume different
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Figure 3. Standardized mean difference (SMD) effect estimates with 90% confidence interval for the “null results” (those with original two-sided
p-value p > 0.05) and their replication studies from the Reproducibility Project: Cancer Biology (Errington et al., 2021). The identifier above each
plot indicates (Original paper number, Experiment number, Effect number). The two examples from Figure 1 are indicated in the plot titles. The
dashed grey line depicts the value of no effect (SMD = 0) whereas the dotted red lines depict the equivalence range with margin A = 1. The
p-values prost are the maximum of the two one-sided p-values for the effect being smaller or greater than +A or —A, respectively. The Bayes
factors BF,,;, quantify evidence for the null hypothesis H, : SMD = 0 against the alternative H; : SMD # 0 with normal unit-information prior
assigned to the SMD under H,.

50f 10



effects under H, will end up with different Bayes factors. Instead of specifying a single effect, one
therefore typically specifies a “prior distribution” of plausible effects. Importantly, the prior distri-
bution, like the equivalence margin, should be determined by researchers with subject knowledge
and before the data are observed.

In practice, the observed data should not be dichotomized into positive or null results, as this
leads to a loss of information. Therefore, to compute the Bayes factors for the RPCB null results,
we used the observed effect estimates as the data and assumed a normal sampling distribution for
them, as in a meta-analysis. The Bayes factors BF,,; shown in Figure 3 then quantify the evidence for
the null hypothesis of no effect (H, : SMD = 0) against the alternative hypothesis that there is an
effect (H, : SMD # 0) using a normal “unit-information” prior distribution (Kass and Wasserman,
1995) for the effect size under the alternative H,. There are several more advanced prior distri-
butions that could be used here, and they should ideally be specified for each effect individually
based on domain knowledge. The normal unit-information prior (with a standard deviation of 2
for SMDs) is only a reasonable default choice, as it implies that small to large effects are plausible
under the alternative. We see that in most cases there is no substantial evidence for either the
absence or the presence of an effect, as with the equivalence tests. The Bayes factors for the two
previously discussed examples from Goetz et al. (2011) and Dawson et al. (2011) are consistent
with our intuititons - there is indeed some evidence for the absence of an effect in Goetz et al.
(2011), while there is even slightly more evidence for the presence of an effect in Dawson et al.
(2011), though the Bayes factor is very close to one due to the small sample sizes. With a lenient
Bayes factor threshold of BF,, > 3 to define evidence for the absence of the effect, only one of the
twenty study pairs meets this criterion in both the original and replication study.

Among the twenty RPCB null results, there is one interesting case (the rightmost plot in the
fourth row (48, 2, 4, 1)) where the Bayes factor is qualitatively different from the equivalence test, re-
vealing a fundamental difference between the two approaches. The Bayes factor is concerned with
testing whether the effect is exactly zero, whereas the equivalence test is concerned with whether
the effect is within an interval around zero. Due to the very large sample size in the original study
(n = 514) and the replication (n = 1153), the data are incompatible with an exactly zero effect, but
compatible with effects within the equivalence range. Apart from this example, however, the ap-
proaches lead to the same qualitative conclusion - most RPCB null results are highly ambiguous.

Conclusions

We showed that in most of the RPCB studies with “null results” (those with p > 0.05), neither the
original nor the replication study provided conclusive evidence for the presence or absence of
an effect. It seems logically questionable to declare an inconclusive replication of an inconclusive
original study as a replication success. While it is important to replicate original studies with null
results, our analysis highlights that they should be analyzed and interpreted appropriately.

For both the equivalence testing and the Bayes factor approach, itis critical that the parameters
of the procedure (the equivalence margin and the prior distribution) are specified independently of
the data, ideally before the studies are conducted. Typically, however, the original studies were de-
signed to find evidence for the presence of an effect, and the goal of replicating the “null result” was
formulated only after failure to do so. Campbell and Gustafson (2021) discuss various approaches
to post-hoc specification of equivalence margins, such as motivating it using data from previous
studies or using field conventions. Hauck and Anderson (1986) propose a sensitivity analysis ap-
proach in the form of plotting the TOST p-value against a range of possible margins (“equivalence
curves”). Post-hoc specification of a prior distribution for a Bayes factor may likewise be based on
historical data, field conventions, or assessed visually with sensitivity analyses.

While the equivalence test and the Bayes factor are two principled methods for analyzing orig-
inal and replication studies with null results, they are not the only possible methods for doing so.
For instance, the reverse-Bayes approach from Micheloud and Held (2022b) specifically tailored to
equivalence testing in the replication setting may lead to more appropriate inferences as it also
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takes into account the compatibility of the effect estimates from original and replication studies.
In addition, there are various other Bayesian methods which could potentially improve upon the
considered Bayes factor approach. For example, Bayes factors based on non-local priors (Johnson
and Rossell, 2010) or based on interval null hypotheses (Morey and Rouder, 2011; Liao et al., 2020),
methods for equivalence testing based on effect size posterior distributions (Kruschke, 2018), or
Bayesian procedures that involve utilities of decisions (Lindley, 1998). Finally, the design of repli-
cation studies should align with the planned analysis (Anderson and Maxwell, 2017; Anderson and
Kelley, 2022; Micheloud and Held, 2022a; Pawel et al., 2022). If the goal of the study is to find evi-
dence for the absence of an effect, the replication sample size should also be determined so that
the study has adequate power to make conclusive inferences regarding the absence of the effect.

Acknowledgements

We thank the contributors of the RPCB for their tremendous efforts and for making their data
publicly available. We thank Maya Mathur for helpful advice with the data preparation. This work
was supported by the Swiss National Science Foundation (grant #189295).

Conflict of interest
We declare no conflict of interest.

Software and data

The code and data to reproduce our analyses is openly available at https://gitlab.uzh.ch/samuel.
pawel/rsAbsence. A snapshot of the repository at the time of writing is available at https://doi.org/10.
5281 /zenodo. XXXXXX. We used the statistical programming language R version 4.2.3 (R Core Team,
2022) for analyses. The R packages ggplot2 (Wickham, 2016), dplyr (Wickham et al., 2022), knitr
(Xie, 2022), and reporttools (Rufibach, 2009) were used for plotting, data preparation, dynamic
reporting, and formatting, respectively. The data from the RPCB were obtained by downloading
the files from https://github.com/mayamathur/rpcb (commit a1e0c63) and extracting the relevant
variables as indicated in the R script preprocess-rpcb-data.R which is available in our git reposi-
tory.
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Computational details

cat(paste(Sys.time(), Sys.timezone(), "\n"))

##

2023-03-29 17:52:02 Europe/Zurich

sessionInfo()

##
#i#
##
##
##
##
##
##
##
##
##
##
##
##
#i#
##
##
##
##
##
##
##
##
##
##
##
##
#it
##
##
##
##

R version 4.2.3 (2023-03-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.6 LTS

Matrix products: default
BLAS: /usr/1ib/x86_64-1linux-gnu/blas/libblas.s0.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.s0.3.9.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=de_CH.UTF-8 LC_COLLATE=en_US.UTF-8
[6] LC_MONETARY=de_CH.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=de_CH.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=de_CH.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] reporttools_1.1.3 xtable_1.8-4 dplyr_1.0.10 ggplot2_3.4.0

[5] knitr_1.41

loaded via a namespace (and not attached):

[1] magrittr_2.0.3 tidyselect_1.2.0 munsell_0.5.0 colorspace_2.1-0
[6] R6_2.5.1 rlang 1.0.6 fansi_1.0.3 highr_0.10

[9] stringr_1.5.0  tools_4.2.3 grid_4.2.3 gtable_0.3.1
[13] xfun_0.36 utf8_1.2.2 cli_3.6.0 DBI_1.1.3

[17] withr_2.5.0 assertthat_0.2.1 tibble_3.1.8 lifecycle_1.0.3
[21] farver_2.1.1 vetrs_0.5.1 glue_1.6.2 evaluate_0.20
[25] labeling 0.4.2 stringi_1.7.12 compiler_4.2.3 pillar_1.8.1
[29] generics_0.1.3 scales_1.2.1 pkgconfig 2.0.3

100f 10



	Introduction
	Null results from the Reproducibility Project: Cancer Biology
	Methods for asssessing replicability of null results
	Equivalence testing
	Bayesian hypothesis testing

	Conclusions

