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Abstract In several large-scale replication projects, statistically non-significant results in both
the original and the replication study have been interpreted as a “replication success”. Here we
discuss the logical problems with this approach: Non-significance in both studies does not ensure
that the studies provide evidence for the absence of an effect and “replication success” can
virtually always be achieved if the sample sizes are small enough. In addition, the relevant error
rates are not controlled. We show how methods, such as equivalence testing and Bayes factors,
can be used to adequately quantify the evidence for the absence of an effect and how they can
be applied in the replication setting. Using data from the Reproducibility Project: Cancer Biology
we illustrate that many original and replication studies with “null results” are in fact inconclusive,
and that their replicability is lower than suggested by the non-significance approach. We
conclude that it is important to also replicate studies with statistically non-significant results, but
that they should be designed, analyzed, and interpreted appropriately.

Introduction
Absence of evidence is not evidence of absence – the title of the 1995 paper by Douglas Altman and
Martin Bland has since become amantra in the statistical andmedical literature (Altman and Bland,
1995). Yet, the misconception that a statistically non-significant result indicates evidence for the
absence of an effect is unfortunately still widespread (Makin and de Xivry, 2019). Such a “null result”
– typically characterized by a p-value of p > 0.05 for the null hypothesis of an absent effect –may also
occur if an effect is actually present. For example, if the sample size of a study is chosen to detect
an assumed effect with a power of 80%, null results will incorrectly occur 20% of the time when the
assumed effect is actually present. If the power of the study is lower, null results will occur more
often. In general, the lower the power of a study, the greater the ambiguity of a null result. To put
a null result in context, it is therefore critical to know whether the study was adequately powered
and under what assumed effect the power was calculated (Hoenig and Heisey, 2001; Greenland,
2012). However, if the goal of a study is to explicitly quantify the evidence for the absence of an
effect, more appropriate methods designed for this task, such as equivalence testing (Senn, 2008;
Wellek, 2010; Lakens, 2017) or Bayes factors (Kass and Raftery, 1995; Goodman, 1999), should be
used from the outset.

The interpretation of null results becomes even more complicated in the setting of replication
studies. In a replication study, researchers attempt to repeat an original study as closely as possible
in order to assess whether consistent results can be obtained with new data (National Academies
of Sciences, Engineering, and Medicine, 2019). In the last decade, various large-scale replication
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projects have been conducted in diverse fields, from the biomedical to the social sciences (Prinz
et al., 2011; Begley and Ellis, 2012; Klein et al., 2014; Open Science Collaboration, 2015; Camerer
et al., 2016, 2018; Klein et al., 2018; Cova et al., 2018; Errington et al., 2021, among others). Most
of these projects reported alarmingly low replicability rates across a broad spectrum of criteria for
quantifying replicability. While most of these projects restricted their focus on original studies with
statistically significant results (“positive results”), the Reproducibility Project: Psychology (RPP, Open
Science Collaboration, 2015), the Reproducibility Project: Experimental Philosophy (RPEP, Cova et al.,
2018), and the Reproducibility Project: Cancer Biology (RPCB, Errington et al., 2021) also attempted to
replicate some original studies with null results – either non-significant or interpreted as showing
no evidence for a meaningful effect by the original authors.

While the RPEP andRPP interpreted non-significant results in both original and replication study
as a “replication success” for some individual replications (see, for example, the replication of Mc-
Cann (2005, replication report: https://osf.io/wcm7n) or the replication of Ranganath and Nosek
(2008, replication report: https://osf.io/9xt25)), they excluded the original null results in the calcu-
lation of an overall replicability rate based on significance. In contrast, the RPCB explicitly defined
null results in both the original and the replication study as a criterion for “replication success”.
According to this criterion, 11∕15 = 73% replications of original null effects were successful.

We believe that there are several logical problems with this “non-significance” criterion. First,
if the original study had low statistical power, a non-significant result is highly inconclusive and
does not provide evidence for the absence of an effect. It is then unclear what exactly the goal of
the replication should be – to replicate the inconclusiveness of the original result? On the other
hand, if the original study was adequately powered, a non-significant result may indeed provide
some evidence for the absence of an effect when analyzed with appropriate methods, so that the
goal of the replication is clearer. However, the criterion by itself does not distinguish between
these two cases. Second, with this criterion researchers can virtually always achieve replication
success by conducting a replication study with a very small sample size, such that the p-value is
non-significant and the result are inconclusive. This is because the null hypothesis under which the
p-value is computed is misaligned with the goal of inference, which is to quantify the evidence for
the absence of an effect. We will discuss methods that are better aligned with this inferential goal.
Third, the criterion does not control the error of falsely claiming the absence of an effect at some
predetermined rate. This is in contrast to the standard replication success criterion of requiring
significance from both studies (also known as the two-trials rule, see Section 12.2.8 in Senn, 2008),
which ensures that the error of falsely claiming the presence of an effect is controlled at a rate
equal to the squared significance level (for example, 5% × 5% = 0.25% for a 5% significance level).
The non-significance criterion may be intended to complement the two-trials rule for null results.
However, it fails to do so in this respect, which may be required by regulators and funders.

The aim of this paper is to present two principled approaches for analyzing replication studies
of null results, which can address the limitations of the non-significance criterion. In the following,
we will use the null results replicated in the RPCB to illustrate the problems of the non-significance
criterion. We then explain and illustrate how both frequentist equivalence testing and Bayesian
hypothesis testing can be used to overcome them. It is important to note that it is not our intent
to diminish the enormously important contributions of the RPCB, but rather to build on their work
and provide recommendations for future replication researchers.
Null results from the Reproducibility Project: Cancer Biology
Figure 1 shows effect estimates on standardized mean difference (SMD) scale with 95% confidence
intervals from two RPCB study pairs. In both study pairs, the original and replications studies are
“null results” and therefore meet the non-significance criterion for replication success (the two-
sided p-values are greater than 0.05 in both the original and the replication study). However, intu-
ition would suggest that the conclusions in the two pairs are very different.
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The original study fromDawson et al. (2011) and its replication both show large effect estimates
in magnitude, but due to the very small sample sizes, the uncertainty of these estimates is large,
too. With such low sample sizes, the results seem inconclusive. In contrast, the effect estimates
from Goetz et al. (2011) and its replication are much smaller in magnitude and their uncertainty is
also smaller because the studies used larger sample sizes. Intuitively, the results seem to provide
more evidence for a zero (or negligibly small) effect. While these two examples show the qualitative
difference between absence of evidence and evidence of absence, wewill now discuss how the two
can be quantitatively distinguished.

n = 3 n = 3
p = 0.15 p = 0.07

n = 34 n = 61
p = 0.87 p = 0.06

Dawson et al. (2011)
Absence of evidence

Goetz et al. (2011)
Evidence of absence

Original Replication Original Replication
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Figure 1. Two examples of original and replication study pairs which meet the non-significance replicationsuccess criterion from the Reproducibility Project: Cancer Biology (Errington et al., 2021). Shown arestandardized mean difference effect estimates with 95% confidence intervals, sample sizes n, and two-sided
p-values p for the null hypothesis that the effect is absent.

Methods for assessing replicability of null results
There are both frequentist and Bayesian methods that can be used for assessing evidence for the
absence of an effect. Anderson and Maxwell (2016) provide an excellent summary in the context
of replication studies in psychology. We now briefly discuss two possible approaches – frequentist
equivalence testing and Bayesian hypothesis testing – and their application to the RPCB data.
Frequentist equivalence testing
Equivalence testing was developed in the context of clinical trials to assess whether a new treat-
ment – typically cheaper or with fewer side effects than the established treatment – is practically
equivalent to the established treatment (Wellek, 2010). The method can also be used to assess
whether an effect is practically equivalent to an absent effect, usually zero. Using equivalence
testing as a way to put non-significant results into context has been suggested by several authors
(Hauck and Anderson, 1986; Campbell and Gustafson, 2018). The main challenge is to specify the
margin Δ > 0 that defines an equivalence range [−Δ,+Δ] in which an effect is considered as absent
for practical purposes. The goal is then to reject the null hypothesis that the true effect is outside
the equivalence range. This is in contrast to the usual null hypothesis of superiority tests which
state that the effect is zero or smaller than zero, see Figure 2 for an illustration.

To ensure that the null hypothesis is falsely rejected at most � × 100% of the time, the standard
approach is to declare equivalence if the (1−2�)×100% confidence interval for the effect is contained
within the equivalence range, for example, a 90% confidence interval for � = 5% (Westlake, 1972).
This procedure is equivalent to declaring equivalence when two one-sided tests (TOST) for the
null hypotheses of the effect being greater/smaller than +Δ and −Δ, are both significant at level �
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(Schuirmann, 1987). A quantitative measure of evidence for the absence of an effect is then given
by themaximumof the twoone-sided p-values (the TOST p-value). A reasonable replication success
criterion for null results may therefore be to require that both the original and the replication TOST
p-values be smaller than some level � (conventionally 0.05), or, equivalently, that their (1−2�)×100%
confidence intervals are included in the equivalence region. In contrast to the non-significance
criterion, this criterion controls the error of falsely claiming replication success at level �2 when
there is a true effect outside the equivalence margin, thus complementing the usual two-trials rule
in drug regulation (Senn, 2008, section 12.2.8).

Effect size
−Δ 0 +Δ

Equivalence
H1H0 H0

Superiority
(two-sided)

H0H1 H1

Superiority
(one-sided)

H1H0

Figure 2. Null hypothesis (H0) and alternative hypothesis (H1) for superiority and equivalence tests (withequivalence margin Δ > 0).
Returning to the RPCB data, Figure 3 shows the standardized mean difference effect estimates

with 90% confidence intervals for all 15 effects whichwere treated as quantitative null results by the
RPCB.1 Most of them showed non-significant p-values (p > 0.05) in the original study. It is, however,
noteworthy that two effects from the second experiment from the original paper 48were regarded
as null results despite their statistical significance. We see that there are 11 “successes” according
to the non-significance criterion (with p > 0.05 in original and replication study) out of total 15 null
effects, as reported in Table 1 from Errington et al. (2021).

We will now apply equivalence testing to the RPCB data. The dotted red lines in Figure 3 rep-
resent an equivalence range for the margin Δ = 0.74, which Wellek (2010, Table 1.1) classifies as
“liberal”. However, even with this generous margin, only 4 of the 15 study pairs are able to estab-
lish replication success at the 5% level, in the sense that both the original and the replication 90%
confidence interval fall within the equivalence range (or, equivalently, that their TOST p-values are
smaller than 0.05). For the remaining 11 studies, the situation remains inconclusive and there is
no evidence for the absence or the presence of the effect. For instance, the previously discussed
example from Goetz et al. (2011) marginally fails the criterion (pTOST = 0.06 in the original study
and pTOST = 0.04 in the replication), while the example from Dawson et al. (2011) is a clearer failure
(pTOST = 0.75 in the original study and pTOST = 0.88 in the replication) as both effect estimates even
lie outside the equivalence margin.

The post-hoc specification of equivalence margins is controversial. Ideally, the margin should
be specified on a case-by-case basis in a pre-registered protocol before the studies are conducted
by researchers familiar with the subjectmatter. In the social andmedical sciences, the conventions
of Cohen (1992) are typically used to classify SMD effect sizes (SMD = 0.2 small, SMD = 0.5medium,
SMD = 0.8 large). While effect sizes are typically larger in preclinical research, it seems unrealistic

1There are four original studies with null effects for which two or three “internal” replication studies were conducted, leading
in total to 20 replications of null effects. As in the RPCB main analysis (Errington et al., 2021), we aggregated their SMD esti-
mates into a single SMD estimate with fixed-effect meta-analysis and recomputed the replication p-value based on a normal
approximation. For the original studies and the single replication studies we report the p-values as provided by the RPCB.
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n = 4 n = 5
p = 0.43 p = 0.99

pTOST = 0.63 pTOST = 0.21
BF01 = 1.4 BF01 = 2.4

n = 34 n = 61
p = 0.87 p = 0.06

pTOST = 0.06 pTOST = 0.04
BF01 = 5 BF01 = 4.1

n = 8 n = 8
p = 0.24 p = 0.4

pTOST = 0.6 pTOST = 0.44
BF01 = 1.5 BF01 = 2.1

n = 3 n = 3
p = 0.15 p = 0.07

pTOST = 0.75 pTOST = 0.88

BF01 = 1 1.1 BF01 = 1 1.8

n = 514 n = 1153
p = 0.06 p < 0.0001

pTOST < 0.0001 pTOST < 0.0001
BF01 = 8.1 BF01 < 1 1000

n = 18 n = 54
p = 0.75 p = 0.15

pTOST = 0.11 pTOST = 0.19
BF01 = 4.1 BF01 = 2.3

n = 21 n = 35
p = 0.06 p = 0.26

pTOST = 0.45 pTOST = 0.4
BF01 = 1.7 BF01 = 1.3

n = 8 n = 8
p = 0.21 p = 0.4

pTOST = 0.64 pTOST = 0.44
BF01 = 1.3 BF01 = 2.1

n = 20 n = 84
p = 0.54 p = 0.02

pTOST < 0.0001 pTOST < 0.0001
BF01 = 10 BF01 = 2.6

n = 514 n = 1153
p < 0.0001 p < 0.0001

pTOST < 0.0001 pTOST < 0.0001

BF01 = 1 52 BF01 < 1 1000

n = 30 n = 21
p = 0.95 p = 0.23

pTOST = 0.05 pTOST = 0.52
BF01 = 5.1 BF01 = 1.3

n = 12 n = 30
p = 0.32 p = 0.38

pTOST = 0.41 pTOST = 0.06
BF01 = 2.2 BF01 = 4.9

n = 3 n = 16
p = 0.07 p = 0.17

pTOST = 0.89 pTOST = 0.07

BF01 = 1 1.9 BF01 = 3

n = 12 n = 24
p = 0.62 p = 0.86

pTOST = 0.5 pTOST = 0.15
BF01 = 1.7 BF01 = 3.8

n = 514 n = 1153
p = 0.00014 p < 0.0001

pTOST < 0.0001 pTOST < 0.0001

BF01 = 1 31 BF01 < 1 1000

(48, 2, 4) (48, 2, 5) (48, 2, 6)

(29, 2, 2) − Dawson et al. (2011) (41, 2, 1) (47, 1, 5)

(24, 1, 2) (24, 3, 6) (28, 3, 3)

(20, 1, 1) − Goetz et al. (2011) (20, 1, 3) (21, 1, 3)

(5, 1, 3) (9, 2, 6) (15, 2, 2)

Original Replication Original Replication Original Replication

Original Replication Original Replication Original Replication

Original Replication Original Replication Original Replication
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Figure 3. Effect estimates on standardized mean difference (SMD) scale with 90% confidence interval for the “null results” and their replicationstudies from the Reproducibility Project: Cancer Biology (Errington et al., 2021). The identifier above each plot indicates (original paper number,experiment number, effect number). Two original effect estimates from original paper 48 were statistically significant at p < 0.05, but wereinterpreted as null results by the original authors and therefore treated as null results by the RPCB. The two examples from Figure 1 areindicated in the plot titles. The dashed gray line represents the value of no effect (SMD = 0), while the dotted red lines represent the equivalencerange with a margin of Δ = 0.74, classified as “liberal” byWellek (2010, Table 1.1). The p-value pTOST is the maximum of the two one-sided
p-values for the null hypotheses of the effect being greater/less than +Δ and −Δ, respectively. The Bayes factor BF01 quantifies the evidence forthe null hypothesisH0 ∶ SMD = 0 against the alternativeH1 ∶ SMD ≠ 0 with normal unit-information prior assigned to the SMD underH1.
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to specify margins larger than 1 on SMD scale to represent effect sizes that are absent for practical
purposes. It could also be argued that the chosen margin Δ = 0.74 is too lax compared to margins
commonly used in clinical research; for instance, in oncology, a margin of Δ = log(1.3) is commonly
used for log odds/hazard ratios, whereas in bioequivalence studies a margin of Δ = log(1.25) is the
convention (Senn, 2008, chapter 22). These margins would translate into much more stringent
margins of Δ = 0.14 and Δ = 0.12 on the SMD scale, respectively, using the SMD = (

√

3∕�) logOR
conversion (Cooper et al., 2019, p. 233). Therefore, we report a sensitivity analysis in Figure 4.
The top plot shows the number of successful replications as a function of the margin Δ and for
different TOST p-value thresholds. Such an “equivalence curve” approach was first proposed by
Hauck and Anderson (1986). We see that for realistic margins between 0 and 1, the proportion of
replication successes remains below 50% for the conventional � = 0.05 level. To achieve a success
rate of 11∕15 = 73.3%, as was achievedwith the non-significance criterion from the RPCB, unrealistic
margins of Δ > 2 are required, highlighting the paucity of evidence provided by these studies.
Changing the success criterion to a more lenient level (� = 0.1) or a more stringent level (� = 0.01)
hardly changes this conclusion.

margin used in main analysis

non−significance criterion successes

pTOST ≤ α in original and replication study

0.00 0.74 1.00 2.00 3.00 4.00

0 (0%)
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Figure 4. Number of successful replications of original null results in the RPCB as a function of the margin Δof the equivalence test (pTOST ≤ � in both studies for � = 0.1, 0.05, 0.01) or the standard deviation of thezero-mean normal prior distribution for the SMD effect size under the alternativeH1 of the Bayes factor test(BF01 ≥ 
 in both studies for 
 = 3, 6, 10).
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Bayesian hypothesis testing
The distinction between absence of evidence and evidence of absence is naturally built into the
Bayesian approach to hypothesis testing. A central measure of evidence is the Bayes factor (Kass
and Raftery, 1995), which is the updating factor of the prior odds to the posterior odds of the null
hypothesisH0 versus the alternative hypothesisH1

Pr(H0 | data)
Pr(H1 | data)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Posterior odds

=
Pr(H0)
Pr(H1)
⏟⏟⏟
Prior odds

×
p(data |H0)
p(data |H1)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Bayes factor BF01

.

The Bayes factor quantifies howmuch the observed data have increased or decreased the probabil-
ity of the null hypothesisH0 relative to the alternativeH1. If the null hypothesis states the absenceof an effect, a Bayes factor greater than one (BF01 > 1) indicates evidence for the absence of the ef-fect and a Bayes factor smaller than one indicates evidence for the presence of the effect (BF01 < 1),whereas a Bayes factor not much different from one indicates absence of evidence for either hy-
pothesis (BF01 ≈ 1). A reasonable criterion for successful replication of a null result may hence be
to require a Bayes factor larger than some level 
 > 1 from both studies, for example, 
 = 3 or

 = 10 which are conventional levels for “substantial” and “strong” evidence, respectively (Jeffreys,
1961). In contrast to the non-significance criterion, this criterion provides a genuine measure of
evidence that can distinguish absence of evidence from evidence of absence.

When the observed data are dichotomized into positive (p < 0.05) or null results (p > 0.05), the
Bayes factor based on a null result is the probability of observing p > 0.05when the effect is indeed
absent (which is 95%) divided by the probability of observing p > 0.05 when the effect is indeed
present (which is one minus the power of the study). For example, if the power is 90%, we have
BF01 = 95%∕10% = 9.5 indicating almost ten times more evidence for the absence of the effect than
for its presence. On the other hand, if the power is only 50%, we have BF01 = 95%∕50% = 1.9 indicat-ing only slightly more evidence for the absence of the effect. This example also highlights the main
challenge with Bayes factors – the specification of the alternative hypothesis H1. The assumed ef-
fect under H1 is directly related to the power of the study, and researchers who assume different
effects underH1 will end up with different Bayes factors. Instead of specifying a single effect, onetherefore typically specifies a “prior distribution” of plausible effects. Importantly, the prior distri-
bution, like the equivalence margin, should be determined by researchers with subject knowledge
and before the data are collected.

In practice, the observed data should not be dichotomized into positive or null results, as this
leads to a loss of information. Therefore, to compute the Bayes factors for the RPCB null results,
we used the observed effect estimates as the data and assumed a normal sampling distribution for
them, as typically done in a meta-analysis. The Bayes factors BF01 shown in Figure 3 then quantifythe evidence for the null hypothesis of no effect (H0 ∶ SMD = 0) against the alternative hypothesis
that there is an effect (H1 ∶ SMD ≠ 0) using a normal “unit-information” prior distribution2 (Kass and
Wasserman, 1995) for the effect size under the alternativeH1. We see that inmost cases there is no
substantial evidence for either the absence or the presence of an effect, as with the equivalence
tests. For instance, with a lenient Bayes factor threshold of 3, only 1 of the 15 replications are
successful, in the sense of having BF01 > 3 in both the original and the replication study. The Bayesfactors for the two previously discussed examples are consistent with our intuitions – in the Goetz
et al. (2011) example there is indeed substantial evidence for the absence of an effect (BF01 = 5 inthe original study and BF01 = 4.1 in the replication), while in the Dawson et al. (2011) example there
is even weak evidence for the presence of an effect, though the Bayes factors are very close to one
due to the small sample sizes (BF01 = 1∕1.1 in the original study and BF01 = 1∕1.8 in the replication).

2For SMD effect sizes, a normal unit-information prior is a normal distribution centered around the value of no effect
with a standard deviation corresponding to one observation. Assuming that the group means are normally distributed
X1 ∼ N(�1, 2�2∕n) and X2 ∼ N(�2, 2�2∕n) with n the total sample size and � the known data standard deviation, the distribu-
tion of the SMD is SMD = (X1 −X2)∕� ∼ N{(�1 − �2)∕�, 4∕n}. The standard deviation of the SMD based on one unit (n = 1) is
hence 2, just as the unit standard deviation for log hazard/odds/rate ratio effect sizes (Spiegelhalter et al., 2004, Section 2.4).
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As with the equivalence margin, the choice of the prior distribution for the SMD under the
alternative H1 is debatable. The normal unit-information prior seems to be a reasonable default
choice, as it implies that small to large effects are plausible under the alternative, but other normal
priors with smaller/larger standard deviations could have been considered to make the test more
sensitive to smaller/larger true effect sizes. We therefore report a sensitivity analysis with respect
to the choice of the prior standard deviation and the Bayes factor threshold in the bottom plot
of Figure 4. It is uncommon to specify prior standard deviations larger than the unit-information
standard deviation of 2, as this corresponds to the assumption of very large effect sizes under the
alternatives. However, to achieve replication success for a larger proportion of replications than
the observed 1∕15 = 6.7%, unreasonably large prior standard deviations have to be specified. For
instance, a standard deviation of roughly 5 is required to achieve replication success in 50% of the
replications at a lenient Bayes factor threshold of 
 = 3. The standard deviation needs to be almost
20 so that the same success rate 11∕15 = 73.3% as with the non-significance criterion is achieved.
The necessary standard deviations are even higher for stricter Bayes factor threshold, such as 
 = 6
or 
 = 10.

Of note, among the 15RPCBnull results, there are three interesting cases (the three effects from
original paper 48) where the Bayes factor is qualitatively different from the equivalence test, reveal-
ing a fundamental difference between the two approaches. The Bayes factor is concerned with
testing whether the effect is exactly zero, whereas the equivalence test is concerned with whether
the effect is within an interval around zero. Due to the very large sample size in the original study
(n = 514) and the replication (n = 1′153), the data are incompatible with an exactly zero effect,
but compatible with effects within the equivalence range. Apart from this example, however, both
approaches lead to the same qualitative conclusion –most RPCB null results are highly ambiguous.
Conclusions
We showed that in most of the RPCB studies with original “null results”, neither the original nor
the replication study provided conclusive evidence for the presence or absence of an effect. It
seems logically questionable to declare an inconclusive replication of an inconclusive original study
as a replication success. While it is important to replicate original studies with null results, our
analysis highlights that they should be analyzed and interpreted appropriately. Box 1 summarizes
our recommendations.

When analyzed with equivalence tests or Bayes factors, the conclusions are far less optimistic
than those of the RPCB investigators, who state that “original null results were twice as likely as
original positive results to mostly replicate successfully (80% vs. 40%)” (Errington et al., 2021, p.16).
While the exact success rate depends on the equivalence margin and the prior distribution, sensi-
tivity analyses showed that even with unrealistically liberal choices, the success rate remains below
40%. This is not unexpected, as a study typically requires larger sample sizes to detect the absence
of an effect than to detect its presence (Matthews, 2006, section 11.5.3). However, the RPCB sample
sizes were only chosen so that each replication had at least 80% power to detect the original effect
estimate. The design of replication studies should ideally align with the planned analysis (Anderson
and Maxwell, 2017; Anderson and Kelley, 2022; Micheloud and Held, 2022a; Pawel et al., 2022). If
the goal of the study is to find evidence for the absence of an effect, the replication sample size
should also be determined so that the study has adequate power to make conclusive inferences
regarding the absence of the effect.

For both the equivalence test and the Bayes factor approach, it is critical that the equivalence
margin and the prior distribution are specified independently of the data, ideally before the origi-
nal and replication studies are conducted. Typically, however, the original studies were designed
to find evidence for the presence of an effect, and the goal of replicating the “null result” was for-
mulated only after failure to do so. It is therefore important that margins and prior distributions
are motivated from historical data and/or field conventions (Campbell and Gustafson, 2021), and
that sensitivity analyses regarding their choice are reported.
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Box 1: Recommendations for the analysis of replication studies of original null results. Calculations are basedon effect estimates �̂i with standard errors �i for i ∈ {o, r} from an original study (subscript o) and itsreplication (subscript r). Both effect estimates are assumed to be normally distributed around the true effectsize � with known variance �2. The effect size �0 represents the value of no effect, typically �0 = 0.

Equivalence test

1. Specify a margin Δ > 0 that defines an equivalence range [�0 −Δ, �0 +Δ] in whicheffects are considered absent for practical purposes.
2. Compute the TOST p-values for original and replication data

pTOST,i = max
{

Φ

(

�̂i − �0 − Δ
�i

)

, 1 − Φ

(

�̂i − �0 + Δ
�i

)}

, i ∈ {o, r}

with Φ(⋅) the cumulative distribution function of the standard normal distribu-
tion.

3. Declare replication success at level � if pTOST,o ≤ � and pTOST,r ≤ �, conventionally
� = 0.05.

4. Performa sensitivity analysis with respect to themarginΔ. For example, visualize
the TOST p-values for different margins to assess the robustness of the conclu-
sions.

Bayes factor

1. Specify a prior distribution for the effect size � that represents plausible values
under the alternative hypothesis that there is an effect (H1 ∶ � ≠ �0). For example,
specify the mean m and variance v of a normal distribution � |H1 ∼ N(m, v).2. Compute the Bayes factors contrastingH0 ∶ � = �0 toH1 ∶ � ≠ �0 for original andreplication data. Assuming a normal prior distribution, the Bayes factor is

BF01,i =
√

1 + v
�2i

exp

[

−1
2

{

(�̂i − �0)2

�2i
−
(�̂i − m)2

�2i + v

}]

, i ∈ {o, r}.

3. Declare replication success at level 
 > 1 ifBF01,o ≥ 
 andBF01,r ≥ 
 , conventionally

 = 3 (substantial evidence) or 
 = 10 (strong evidence).

4. Perform a sensitivity analysis with respect to the prior distribution. For example,
visualize the Bayes factors for different prior standard deviations to assess the
robustness of the conclusions.

Researchers may also ask which of the two approaches is “better”. We believe that this is the
wrong question to ask, because both methods address slightly different questions and are better
in different senses; the equivalence test is calibrated to have certain frequentist error rates, which
the Bayes factor is not. The Bayes factor, on the other hand, seems to be amore naturalmeasure of
evidence as it treats the null and alternative hypotheses symmetrically and represents the factor by
which rational agents should update their beliefs in light of the data. Conclusions about whether
or not a study can be replicated should ideally be drawn using multiple methods. Replications
that are successful with respect to all methods provide more convincing support for the original
finding, while replications that are successful with only some methods require closer examination.
Fortunately, the use of multiple methods is already standard practice in replication assessment
(e. g., the RPCB used seven differentmethods), so our proposal does not require amajor paradigm
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shift.
While the equivalence test and the Bayes factor are two principled methods for analyzing origi-

nal and replication studies with null results, they are not the only possible methods for doing so. A
straightforward extension would be to first synthesize the original and replication effect estimates
with a meta-analysis, and then apply the equivalence and Bayes factor tests to the meta-analytic
estimate. This could potentially improve the power of the tests, but consideration must be given
to the threshold used for the p-values/Bayes factors, as naive use of the same thresholds as in the
standard approaches may make the tests too liberal. Furthermore, there are various advanced
methods for quantifying evidence for absent effects which could potentially improve on the more
basic approaches considered here (Lindley, 1998; Johnson and Rossell, 2010; Morey and Rouder,
2011; Kruschke, 2018;Micheloud and Held, 2022b).
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Computational details

cat(paste(Sys.time(), Sys.timezone(), "\n"))

## 2023-04-24 12:41:00 Etc/UTC

sessionInfo()

## R version 4.2.3 (2023-03-15)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.2 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] reporttools_1.1.3 xtable_1.8-4 dplyr_1.1.1 gridExtra_2.3
## [5] ggplot2_3.4.2 knitr_1.42
##
## loaded via a namespace (and not attached):
## [1] magrittr_2.0.3 tidyselect_1.2.0 munsell_0.5.0 viridisLite_0.4.1
## [5] colorspace_2.1-0 R6_2.5.1 rlang_1.1.0 fansi_1.0.4
## [9] highr_0.10 tools_4.2.3 grid_4.2.3 gtable_0.3.3
## [13] xfun_0.38 utf8_1.2.3 cli_3.6.1 withr_2.5.0
## [17] tibble_3.2.1 lifecycle_1.0.3 farver_2.1.1 vctrs_0.6.2
## [21] glue_1.6.2 evaluate_0.20 labeling_0.4.2 compiler_4.2.3
## [25] pillar_1.9.0 generics_0.1.3 scales_1.2.1 pkgconfig_2.0.3
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