From 71f0d03e47362ce688687a818555a04ad2e85297 Mon Sep 17 00:00:00 2001 From: Ruocheng Han <ruocheng.han@chem.uzh.ch> Date: Wed, 2 Jun 2021 08:48:05 +0000 Subject: [PATCH] Update README.md --- README.md | 31 +++++++++++++++++++++++++++++++ 1 file changed, 31 insertions(+) diff --git a/README.md b/README.md index 4de7291..bda617a 100644 --- a/README.md +++ b/README.md @@ -241,6 +241,37 @@ do done ``` +## References +For the use of this code (EnergyDensity) in your research, please consider citing following papers: +1. Han, R.; RodrÃguez-Mayorga, M.; Luber, S. A Machine Learning Approach for MP2 Correlation Energies and Its Application to Organic Compounds. J. Chem. Theory Comput. 2021, 17, 777. +2. Han, R.; Luber, S. Fast Estimation of Møller–Plesset Correlation Energies Based on Atomic Contributions. J. Phys. Chem. Lett. 2021, 12, 5324–5331. +```bash +@article{mp2_ed, + doi = {10.1021/acs.jctc.0c00898}, + url = {https://doi.org/10.1021/acs.jctc.0c00898}, + year = {2021}, + month = jan, + publisher = {American Chemical Society ({ACS})}, + volume = {17}, + number = {2}, + pages = {777--790}, + author = {Ruocheng Han and Mauricio Rodr{\'{\i}}guez-Mayorga and Sandra Luber}, + title = {A Machine Learning Approach for {MP}2 Correlation Energies and Its Application to Organic Compounds}, + journal = "J. Chem. Theory Comput." +} + +@article{mpn_ed, + doi = {10.1021/acs.jpclett.1c00900}, + url = {https://doi.org/10.1021/acs.jpclett.1c00900}, + year = {2021}, + month = jun, + publisher = {American Chemical Society ({ACS})}, + pages = {5324--5331}, + author = {R. Han and S. Luber}, + title = {Fast Estimation of M{\o}ller{\textendash}Plesset Correlation Energies Based on Atomic Contributions}, + journal = "J. Phys. Chem. Lett." +} +``` -- GitLab