
First Steps with UNIX and Science Cluster

Fanny Wegner

2023-03-21

Learning outcomes

• Connecting to Science Cluster

• Get familiar with the UNIX environment

• Use the most common UNIX commands

• How to write simple bash scripts

• Run singularity containers

• How to submit a job to Science Cluster

Before we start

• BBEdit: syntax highlighting

• Notepad++

Connecting to Science Cluster

• High performance computing environment of UZH

• Many tools with different advantages available for remote connection

• To connect on command line:

• However, graphical tools with SFTP make things a lot easier:
For Mac e.g., Termius
For Windows e.g., MobaXterm

• Transfer of files on command line:

ssh <shortname>@cluster.s3it.uzh.ch

Hostname

scp my_local_file.txt <shortname>@cluster.s3it.uzh.ch:<target directory>

Science Cluster

• Science Cluster uses bash as shell (= command line interface)
others: zsh (Mac), csh, sh, tcsh …

• Four filesystems for data storage
your home filesystem: or 15 GB/100k files
your personal data filesystem: or 200 GB
scratch filesystem: 20 TB
group-specific shared filesystem

• SSH connection is to login nodes, computations are done on computational
nodes

/home/cluster/$USER

/data/$USER

/scratch/$USER

~/$USER

~

Navigating

• pwd - print working directory

• cd - change directory
cd /
cd ~
cd ..

• ls - list files

• Directories behave similar to files in UNIX

• Symlinks can be used for files and directories

• [tab] will autocomplete any commands or available files

/

home = ~data

useruser

project data → /data/user

..

EXERCISE 1

Files and directories

• cp - copy files and directories

• mv myfile target_directory/ - move file (or directory)
mv myfile newname - rename file (or directory)

• mkdir - create a new directory

• rm - delete files and directories

• ln -s file link_to_file - create a symbolic link for a file (or
directory)

EXERCISE 2

Read and manipulate files
• cat - print all content of a file

• less or more - print some content
for less: g - go to top of file, SHIFT+g, go to bottom of file, /word to search for 'word'

• head - look at the first 10 lines
tail - look at the last 10 lines

• touch - create an empty file or change the “modified by” date of existing file

• nano - simple editor
vi or vim - advanced editor

• wc - count lines, words and bytes
-l lines
-w words
-c characters

• cut -d [delimiter] -f [field] - cut out a specified field by separated by delimiter

• grep - print lines in a file that match pattern

Input and output

• echo “some statement”- print statement to standard output

• echo “Hello world!” > hello.txt - print statement and direct to (new) file

• cat myfile.txt > mynewfile.txt - print content of file and direct it to new
file
cat anotherfile.txt >> mynewfile.txt - print content and concatenate
it to existing file

• command1 | command2 - Directs output from command1 as standard input into
command2 (“piping”)
example: count number of files in current directory
ls | wc -l

EXERCISE 3

Variables

• You can store text or numbers in variables to use in scripts or on the CLI

• Definition myvar=“Hello world”

• Calling $myvar or ${myvar}
example: echo $myvar
 “Hello world”

• Pre-defined variables in UNIX: $USER, $HOME, $PATH etc.

• Can be concatenated with other variables or strings, for example
sample_id=“ESCO00142”
./make_alignment.sh ${sample_id}.fastq.gz ${sample_id}_reference.fasta

• Output from commands can also be stored into a variables
output=$(command)

numfiles=$(ls | wc -l)

No space around the “=“!

Control structures

• for loop - do something for a specified number of times

example1: print the names of all files starting with A

• while loop - do something while some condition is TRUE

for i in {1..n}
do
 command $i
done

for i in A*; do echo $i; done

while [condition]
do
 command1
 command2
done

Space around the [] !

One-liner syntax

Ideally one of these commands changes
the condition as some point, otherwise
you’ll end up with an infinite loop

for i in *
do
 command $i
done

Defined sequence
of numbers For all files in your working directory

Is a number Is a filename

Control structures

• if else - do something if a condition is true

• Also possible to nest if statement

if [condition]
then
 command1
 command2
fi

if [condition]
then
 command1
else
 command2
fi

if [condition]
then
 command1
elif [condition2]
 command2
else
 command3
fi

Arrays

• Data structure that stores multiple elements

• Definition myarray=(1 2 3 4 5 6)

• Calling echo ${myarray[@]}
 1 2 3 4 5 6
 echo ${myarray[0]}
 1

• Looping through array elements Looping through array indices

Curly brackets required

Indexing starts at 0, so this accesses the first element

All elements are accessed with “@“

This expression gives you the
indices of each element

for i in ${myarray[@]}
do
 command $i
done

for i in ${!myarray[@]}
do
 command ${myarray[$i]}
done

Writing simple scripts

• A script is just the concatenation of a series of commands that are executed
one after the other

• A shell script always starts with the shebang #!, defining the shell it will operate
in

• To run a script

#!/usr/bin bash

command1
command2 # this will do X
command3

myscript.sh

You can explain your code (to yourself and others) using comments
(good practice!)./myscript.sh

A quick note: Scope of variables

• Local variables: If you define variables on your command line, it will only be
available in this instance of your shell, not anywhere else

• Similarly, variables defined within scripts are only valid within

• Global variables: Valid everywhere. For example, $USER

EXERCISE 4

Singularity containers

• Singularity = container platform, that packages up pieces of software

• A container = an image (.sif or sometimes .img)

• Portable and reproducible, safe

• To execute the software from an image:

• On Science Cluster, we “install” most our software as singularity images.
To run them, you need to load a required module

• Note: singularity does not work for Mac command line, only on UNIX/linux systems!

singularity_image.sif command [parameters]

module load singularityce

Submission of jobs on Science Cluster

• Jobs can either be single commands or scripts

• Submissions scripts are bash scripts with a special header defining parameters for the job we
request to run

#!/usr/bin/env bash
#SBATCH --cpus-per-task=[number]
#SBATCH --mem=[memory]
#SBATCH --time=[hr:min:sec]
#SBATCH --job-name=[name]
#SBATCH --output=[name]_%j.out
#SBATCH --error=[name]_%j.err

load any required modules
module load [module name]

command1
command2
command3

#!/usr/bin/env bash
#SBATCH --cpus-per-task=8
#SBATCH --mem=5G
#SBATCH —-time=02:00:00
#SBATCH --job-name=myJob
#SBATCH --output=myJob_%j.out
#SBATCH —-error=myJob_%j.err

load any required modules
module load singularityce

path/to/singularity/module.sif command [parameters]

More specific example for our use case

• Submission: sbatch myJob.sh

• What’s happening: squeue -u $USER

• Output from the script (which is normally printed to standard output) can be
directed to .out and .err files

Submission of jobs on Science Cluster

EXERCISE 5

