First Steps with UNIX and Science Cluster

Fanny Wegner
2023-03-21

[earning outcomes

+ Connecting to Science Cluster

- Get familiar with the UNIX environment
Use the most common UNIX commands
How to write simple bash scripts
Run singularity containers

How to submit a job to Science Cluster

Before we start

- BBEdit: syntax highlighting

+ Notepad++

Connecting to Science Cluster

HIgh performance computing environment of UZH
Many tools with different advantages available for remote connection

To connect on command line: ssh <shortname>@cluster.s3it.uzh.ch

\

However, graphical tools with SFTP make things a lot easier:
For Mac e.g., Termius
For Windows e.g., MobaXterm

ostname

Transfer of files on command line:

scp my_local file.txt <shortname>@cluster.s3it.uzh.ch:<target directory>

Science Cluster

+ Science Cluster uses bash as shell (= command line interface)
others: zsh (Mac), csh, sh, tcsh ...

Four filesystems for data storage
yvour home filesystem: /home/cluster/$USER or ~ 15 GB/100Kk files

your personal data fillesystem: /data/$USER Or ~/$USER 200 GB
scratch filesystem: /scratch/sUseER 20 B

group-specific shared filesystem

+ SSH connection is to login nodes, computations are done on computational
NOJES

Navigating

- pwd - print working directory

- cd - change directory /
N
Cd / home = ~
Cd ~ R data
cd .. N |
user user

Ls - list files / \

. . L . . project data -» /data/user
Directories behave similar to files in UNIX

- Symlinks can be used for files and directories

- [tab] will autocomplete any commands or available files

EXERCISE 1

Files and directories

+ CP - copy files and directories

- mv myfile target _directory/ - move file (or directory)
mv myfile newname - rename file (or directory)

- mkd1ir - create a new directory

rm - delete files and directories

- ln —=s file link_to_f1ile - create a symbolic link for a file (or
directory)

EXERCISE 2

Read and manipulate files

- cat - print all content of a file

- less or more - print some content
for less: g - go to top of file, SHIFT+g, go to bottom of file, /word to search for ‘word'

- head - look at the first 10 lines
tail - look at the last 10 lines

- touch - create an empty file or change the “modified by” date of existing file

* hano - simple editor
v1or vim - advanced editor

* WC - count lines, words and bytes
—1 lines
—W words
—C characters

- cut -d [delimiter] —-f [field] - cut out a specified field by separated by delimiter

- grep - print lines in a file that match pattern

INnput and output

- echo “some statement”- print statement to standard output
- echo “Hello world!” > hello.txt - print statement and direct to (new) file

cat myfile.txt > mynewfile.txt - print content of file and direct it to new
file

cat anotherfile.txt >> mynewfile.txt - print content and concatenate
it to existing file

commandl | command?2 - Directs output from command1 as standard input into
command? (“piping”)

example: count number of files in current directory

ls | wc -1

EXERCISE 3

Variables

You can store text or numbers in variables to use in scripts or on the CLI

e u:u!
Def”’“thn myva r.=uHe'L'LO WOI’ld" NO SpaCe arOUﬂd the

w_ _—
Calling smyvar Or ${myvar}

example: echo $myvar
“Hello world”

Pre—-defined variables in UNIX: $USER, $HOME, $PATH etc.

Can be concatenated with other variables or strings, for example

sample_1d="ESC000142"
./make_alignment.sh ${sample_id}.fastq.gz $isample_id} reference.fasta

Output from commands can also be stored into a variables
output=$(command)

numfiles=$(1ls | wc -1)

Control structures

for loop - do something for a specified number of times

for i in {1..n} «—D°MNEASeqUeNCe £ § i3 % «—Foral files in your working directory
do of numbers do

command $1 «—— |5 4 number command $1 <«——Isafilename
done done

examplel: print the names of all files starting with A

for 1 1n Ax; do echo $1; done One-liner syntax

while loop - do something while some condition is TRUE

while [condition] Space around the [] |
commandl [deally one of these commands changes
command2 <« the condition as some point, otherwise

done you’ll end up with an infinite loop

Control structures

If else - do something if a condition is true
if [condition 1

if [condition] if [condition] then
then then commandl
commandl commandl elif [condition2]
command?2 else command?2
f1 command?2 else
f1i command3
fi

Also possible to nest If statement

Arrays

Data structure that stores multiple elements

Definition myarray=(1 2 3 4 5 6) Curly brackets required
Calling echo $imyarrayl[@]} Al elements are accessed with “@
1 2 34560
echo $imyarray|[@]} Indexing starts at O, so this accesses the first element
1 This expression gives you the
iIndices of each element
Looping through array elements Looping through array indices J
for i in ${myarray[@]} for i in ${'myarray[@]} _
do do
command $1 command ${myarray[$i]}

done done

Writing simple scripts

A script Is Just the concatenation of a series of commands that are executed
one after the other

- A shell script always starts with the shelbang #!, defining the shell it will operate
N
#!/usr/bin bash

command1 myscript.sh
command2 # this will do X

command3 k
forun a SCHpt You can explain your code (to yourself and others) using comments
./myscript.sh (good practice!)

A quick note: Scope of variables

+ Local variables: It you define variables on your command line, it will only be
available In this instance of your shell, not anywhere else

- Similarly, variables defined within scripts are only valid within

- Global variables: Valid everywhere. For example, SUSER

EXERCISE 4

Singularity containers

- Singularity = container platform, that packages up pieces of software
-+ A container = an image (.sif or sometimes .Img)
Portable and reproducible, safe
- 1o execute the software from an image: singularity_image.sif command [parameters]
+ On Science Cluster, we “install” most our software as singularity images.

To run them, you need to load a required module
module load singularityce

Note: singularity does not work for Mac command line, only on UNIX/linux systems!

Submission of jobs on Science Cluster

Jobs can either be single commands or scripts

Submissions scripts are bash scripts with a special header defining parameters for the job we

request 10 run
More specific example for our use case

#!/usr/bin/env bash

#SBATCH —-cpus—-per—-task=8
#SBATCH ——mem=5G

#SBATCH —t1me=02:00:00
#SBATCH ——job—name=myJob
#SBATCH ——output=myJob_%j.out
#SBATCH —error=myJob_%j.err

#!/usr/bin/env bash

#SBATCH —-cpus—per—task=[number]
#SBATCH ——mem=[memory]

#SBATCH ——time=[hr:min:sec]
#SBATCH —-job-name=[name]
#SBATCH ——output=[name]_%j.out
#SBATCH ——error=[name] _%j.err

load any required modules

module load [module namel # load any required modules

module load singularityce

commandl
command?2
command3

path/to/singularity/module.sif command [parameters]

Submission of jobs on Science Cluster

- Submission: sbatch myJob.sh
- What'’s happening: squeue —u $USER

+ Output from the script (which is normally printed to standard output) can be
directed to .out and .err files

EXERCISE 5

